首页 | 本学科首页   官方微博 | 高级检索  
     


CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope
Authors:Skowera Ania  Ellis Richard J  Varela-Calviño Ruben  Arif Sefina  Huang Guo Cai  Van-Krinks Cassie  Zaremba Anna  Rackham Chloe  Allen Jennifer S  Tree Timothy I M  Zhao Min  Dayan Colin M  Sewell Andrew K  Unger Wendy W  Unger Wendy  Drijfhout Jan W  Ossendorp Ferry  Roep Bart O  Peakman Mark
Affiliation:Ania Skowera, Richard J. Ellis, Ruben Varela-Calviño, Sefina Arif, Guo Cai Huang, Cassie Van-Krinks, Anna Zaremba, Chloe Rackham, Jennifer S. Allen, Timothy I.M. Tree, Min Zhao, Colin M. Dayan, Andrew K. Sewell, Wendy Unger, Jan W. Drijfhout, Ferry Ossendorp, Bart O. Roep, and Mark Peakman
Abstract:The final pathway of β cell destruction leading to insulin deficiency, hyperglycemia, and clinical type 1 diabetes is unknown. Here we show that circulating CTLs can kill β cells via recognition of a glucose-regulated epitope. First, we identified 2 naturally processed epitopes from the human preproinsulin signal peptide by elution from HLA-A2 (specifically, the protein encoded by the A*0201 allele) molecules. Processing of these was unconventional, requiring neither the proteasome nor transporter associated with processing (TAP). However, both epitopes were major targets for circulating effector CD8+ T cells from HLA-A2+ patients with type 1 diabetes. Moreover, cloned preproinsulin signal peptide–specific CD8+ T cells killed human β cells in vitro. Critically, at high glucose concentration, β cell presentation of preproinsulin signal epitope increased, as did CTL killing. This study provides direct evidence that autoreactive CTLs are present in the circulation of patients with type 1 diabetes and that they can kill human β cells. These results also identify a mechanism of self-antigen presentation that is under pathophysiological regulation and could expose insulin-producing β cells to increasing cytotoxicity at the later stages of the development of clinical diabetes. Our findings suggest that autoreactive CTLs are important targets for immune-based interventions in type 1 diabetes and argue for early, aggressive insulin therapy to preserve remaining β cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号