Calcitonin gene-related peptide in rat spinal cord motoneurons: subcellular distribution and changes induced by axotomy. |
| |
Authors: | J Calderó A Casanovas A Sorribas J E Esquerda |
| |
Affiliation: | Universitat de Barcelona, Estudi General de Lleida, Facultat de Medicina, Departament de Ciències Mèdiques Bàsiques, Catalonia, Spain. |
| |
Abstract: | Using light and electron microscopy, a study has been made of the changes of calcitonin gene-related peptide-like immunoreactivity in rat lumbar spinal cord motoneurons during cell body response to sciatic nerve injury. At light microscopy level, calcitonin gene-related peptide-like immunoreactivity was evaluated using an indirect immunofluorescence technique combined with Fast Blue retrograde tracing and a peroxidase-antiperoxidase procedure. The calcitonin gene-related peptide changes to sciatic nerve transection and crushing were compared. Calcitonin gene-related peptide-like immunoreactivity was transiently increased after the peripheral nerve lesion, but the response was sustained for a longer period when the peripheral nerve was transected and nerve regeneration prevented. The first changes in calcitonin gene-related peptide-like immunoreactivity were detected four days after nerve crush or transection. In animal spinal cords to which nerve crush had been applied, the maximal enhancement of immunoreactivity was found 11 days after lesion. This was followed by a gradual decline, normal levels being attained 45 days after nerve crushing. When the nerve was transected, the response was similar, but the maximal calcitonin gene-related peptide-like immunoreactivity was maintained over a period of between 11 and 30 days. As with crushing, an important decrease was observed after 45 days. The ultrastructural compartmentation of calcitonin gene-related peptide-like immunoreactivity was studied using either peroxidase-antiperoxidase method or immunogold labelling. Calcitonin gene-related peptide-like immuno-reactivity was located in restricted sacs of the Golgi complex, multivesicular bodies, small vesicles and tubulo-vesicular structures. Large, strongly labelled vesicles resembling secretory granules were also observed in neuronal bodies. Our results reveal that the increase of calcitonin gene-related peptide in motoneurons is a relevant change the cell body undergoes in response to peripheral injury. The ultrastructural location of the peptide distribution suggests specific compartmentation on tubulo-vesicular structures connected with the Golgi complex which form a network in the neuronal cytoplasm. The distribution pattern observed may be related to the sorting and delivery of calcitonin gene-related peptide to secretory vesicles. |
| |
Keywords: | |
|
|