首页 | 本学科首页   官方微博 | 高级检索  
     


Aloe spp. – plants with vertebrate-like telomeric sequences
Authors:Hanna Weiss  Harry Scherthan
Affiliation:1. Department of Higher Plant Systematics & Evolution, Institute of Botany, University of Vienna, Rennweg 14, A-1030, Wien, Austria
2. Department of Human Biology & Human Genetics, University of Kaiserslautern, Erwin-Schr?dingerstr., D-67663, Kaiserslautern, Germany
Abstract:Chromosome termini of most eukaryotes end in tracks of short tandemly repeated GC-rich sequences, the composition of which varies among different groups of organisms. Plant species predominantly contain (TTTAGGG)n repeats at their telomeres. However, a few plant species, including members of Alliaceae and Aloe spp. (Asphodelaceae) were found to lack such Arabidopsis-type (T3AG3)n telomeric repeats. Recently, it has been proposed that the lack of T3AG3 telomeric repeat sequences extends to all species forming the Asparagales clade. Here, we analysed the composition of Aloe telomeres by single-primer PCR and fluorescence in-situ hybridization (FISH) with directly labelled Arabidopsis-type (TTTAGGG)28–43 DNA probe, and with vertebrate-type (TTAGGG)33–50 DNA and a (C3TA2)3 peptide nucleic acid (PNA) probe. It was found that Nicotiana tabacum contained Arabidopsis-type telomeric repeats, while Aloe telomeres lacked the corresponding FISH signals. Surprisingly, FISH with the highly specific vertebrate-type (C3TA2)3 PNA probe resulted in strong T2AG3-specific FISH signals at the ends of chromosomes of both Aloe and Nicotiana tabacum, suggesting the presence of T2AG3 telomeric repeats in these species. FISH with a long (TTAGGG)33–50 DNA probe also highlighted Aloe chromosome ends, while this probe failed to reveal FISH signals on tobacco chromosomes. These results indicate the presence of vertebrate-like telomeric sequences at the telomeres of Aloe spp. chromosomes. However, single-primer PCR with (T2AG3)5 primers failed to amplify such sequences in Aloe, which could indicate a low copy number of T2AG3 repeats at the chromosome ends and/or their co-orientation and interspersion with other repeat types. Our results suggest that telomeres of plant species, which were thought to lack GC-rich repeats, may in fact contain variant repeat types. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:Aloe   Asparagales  evolution  fluorescence in-situ hybridization  PCR  PNA  telomere  TTAGGG
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号