Evidence that the secondary as well as the primary endings of the muscle spindles may be responsible for the tonic stretch reflex of the decerebrate cat |
| |
Authors: | P. B. C. Matthews |
| |
Abstract: | 1. The size of the tonic stretch reflex of the soleus or gastrocnemius muscle of the decerebrate cat has been compared with the size of the reflex contraction elicited in the same muscle by high-frequency vibration applied to its tendon.2. On the assumption that vibration preferentially excites the primary endings of the muscle spindles it may be used to estimate the relation between the reflex response and the frequency of the Ia input to the spinal cord. On this basis, the increase in tension evoked by increasing extension is too great to be explained by the increase in Ia input with extension previously found on single fibre recording in comparable preparations.3. When vibration was superimposed on stretch reflexes elicited by different extensions, the size of the additional contraction elicited by the vibration remained approximately constant. If the stretch and vibration reflexes both depended entirely upon the Ia pathway, then occlusion between them would have been expected instead of the simple summation which was found.4. The absence of occlusion was not due to variation of the contractile strength of the muscle with its extension. This was shown by finding that the reflex contraction of soleus produced by stimulating the medial gastrocnemius nerve also remained the same size when elicited at different lengths of the muscle.5. The reflex effects were studied of superimposing alternate stretches and releases of 0.2 mm, on extensions of several mm. The small stretches elicited responses which were larger than expected from the response to large stretches, and which were approximately the same size at different mean lengths of the muscle.6. It is concluded that the tonic stretch reflex of the decerebrate cat cannot readily be explained solely by the increase in Ia discharge produced by stretching, as usually believed. Instead, it is suggested that the group II afferent fibres from the secondary endings of the muscle spindle also play an important part in its production. |
| |
Keywords: | |
|
|