首页 | 本学科首页   官方微博 | 高级检索  
检索        


Inhibition of antigen-specific T cell trafficking into the central nervous system via blocking PECAM1/CD31 molecule
Authors:Qing Z  Sandor M  Radvany Z  Sewell D  Falus A  Potthoff D  Muller W A  Fabry Z
Institution:Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 53706, USA.
Abstract:Trafficking of antigen-specific T cells into the central nervous system (CNS) is an important initiating step in inflammation in the brain. In spite of the extensive knowledge about the role of adhesion molecules in T cell migration across peripheral vessels, the mechanism of the entry of antigen-specific T cells into the CNS is not known. This work was designed to study the regulatory roles of adhesion molecules in antigen-specific T cell migration into the CNS. Antigen-specific T cells were tracked in an in vivo migration assay using T cell receptor (TCR) transgenic mice having 95% of T cells specific for a defined antigen. pigeon cytochrome c (PCC). TCR transgenic mice were cannulated intraventricularly (IVT) for PCC antigen infusion and cerebrospinal fluid (CSF) sampling. Upon PCC infusion into the CNS, the number of alpha/beta TCR+ Vbeta3+ Mac1- cells in the CSF was characterized in the presence or absence of anti-adhesion molecule reagents. We found that antibodies against VCAM-1 (CD106), VLA-4 (CD49d/CD29), ICAM-1 (CD54), and LFA-1 (CD11a/CD18) did not influence the increased number of antigen-specific T cells in the CSF However, upon intravenous (i.v.) injection, anti-PECAM-1 (CD31) antibody or PECAM-Ig chimeric molecule inhibited the trafficking of alpha/beta TCR+ Vbeta3+ Mac1- cells into the CNS. The expression of PECAM-1 (CD31) was also up-regulated on antigen-specific T cells in a time-dependent manner in vitro upon antigenic stimulation. The antigen-induced activation of T cells in vivo was measured by CD44 and LFA-1 expression and found to be comparable between mPECAMIg-treated mice and wild-type serum control-treated groups. This indicates that CD31 inhibition of antigen-specific T cell accumulation in the CNS is probably not due to a functional inhibition of these cells. Finally, adoptive transfer of CFSE-labeled AND transgenic cells into na?ve animals resulted in the accumulation of these cells in the CNS upon PCC IVT immunization that was also inhibited by mPECAMIg treatment. Hence, PECAM-1 (CD31) might play an important role in regulating antigen-specific T cells trafficking in CNS inflammatory diseases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号