首页 | 本学科首页   官方微博 | 高级检索  
     


Endothelium-dependent, shear-induced vasodilation is rate-sensitive
Authors:Butler P J  Weinbaum S  Chien S  Lemons D E
Affiliation:Department of Mechanical Engineering, The City College of New York, New York 10031, USA.
Abstract:OBJECTIVES: To quantify the relative contributions of the rate of change and the magnitude of shear stress to endothelium-mediated arteriolar dilation. METHODS: A feedback control system was designed in which shear stress (tau) and the temporal shear gradient (TSG) were prescribed and dynamically controlled in isolated rat cremaster 1A arterioles. The TSG was the quotient of the maximum shear stress and the ramp duration. This system was used to assess the roles of tau and TSG in the initial, transient vasodilations and the secondary, sustained vasodilations in response to steps and ramps in shear stress. RESULTS: Both step- and ramp-shear experiments revealed time-dependent hiphasic vasodilations that we report for the first time. Application of a step-shear stress of 20 dynes/cm2 elicited an initial transient vasodilation that peaked at about 4 min. When the shear stress was applied as a ramp that reached the maximum value of 20 dynes/cm2 over 5 min, a vasodilation was observed over the ramp period, which reached a peak at the end of the ramp period that was much lower than that observed after step shear. After 20 dynes/cm2 was attained, the vessel diameter decreased despite constant maintenance of the maximum shear stress. In both step- and ramp-shear experiments, after the decrease of the initial vasodilation, a second phase of vasodilation began approximately 15 min after the beginning of the shear application. The second phase of vasodilation reached a steady state that was essentially the same for both the step and the ramp shear. By refining the ramping apparatus further, we varied the TSG up to 40 dynes/cm2 per second and showed that the early vasodilation was highly rate sensitive to TSGs greater than 5 dynes/cm2 per second for a given intermediate value of final shear stress (20 dynes/cm2) and was magnitude sensitive when shear was increased gradually (TSG < 5 dynes/cm2 per second). CONCLUSIONS: Our results suggest that two fundamentally different responses to shear stress are mediated by microvascular endothelium: one vasodilation is elicited by shear stress changes on a time scale of a few seconds or less and another is elicited by shear stress changes on a longer time scale. The former response is potent, transient, and rate sensitive; the latter is more modest, sustained, and magnitude sensitive.
Keywords:rate sensitivity  arterioles  shear stress  endothelial cells  microvasculature  mechanical forces  cremaster  rat
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号