首页 | 本学科首页   官方微博 | 高级检索  
检索        


Inhibition of human immunodeficiency virus in early infected and chronically infected cells by antisense oligodeoxynucleotides and their phosphorothioate analogues.
Authors:S Agrawal  T Ikeuchi  D Sun  P S Sarin  A Konopka  J Maizel  and P C Zamecnik
Institution:Worcester Foundation for Experimental Biology, Shrewsbury, MA 01545.
Abstract:Antisense oligodeoxynucleotides, both the phosphorothioate analogues and unmodified oligomers of the same sequence, inhibit replication and expression of human immunodeficiency virus already growing in tissue cultures of MOLT-3 cells with much greater efficacy than do mismatched ("random") oligomers and homooligomers of the same length and with the same internucleotide modification. This preferential inhibitory effect is elicited in as short a time as 4-24 hr postinfection. Likewise, antisense oligomers exhibit greater inhibitory effects on human immunodeficiency virus in chronically infected cells than do mismatched oligomers and homooligomers. Phosphorothioate antisene oligomers are up to 100 times more potent than unmodified oligomers of the same sequence in these inhibitory assays. These results, in major respects, confirm and extend those recently published by Matsukura et al. Matsukura, M., Zon, G., Shinozuka, K., Robert-Guroff, M., Shimada, T., Stein, C. A., Mitsuza, H., Wong-Staal, F., Cohen, J. S. & Broder, S. (1989) Proc. Natl. Acad. Sci. USA 86, 4244-4248]. They also point out the importance of computer analysis of sequences though to be random but that in reality contain significant areas of likely hybridization, either to the viral genome or to the complementary DNA strand synthesized from it. They thus reinforce the concept that specific base pairing is a crucial feature of oligonucleotide inhibition of human immunodeficiency virus.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号