首页 | 本学科首页   官方微博 | 高级检索  
     


Detection of left ventricle function from a magnetically levitated impeller behavior
Authors:Hoshi Hideo  Asama Junichi  Hara Chikara  Hijikata Wataru  Shinshi Tadahiko  Shimokohbe Akira  Takatani Setsuo
Affiliation:Tokyo Medical and Dental University, Department of Artificial Organs, Institute of Biomaterials and Bioengineering, Tokyo, Japan.
Abstract:The magnetically levitated (Mag-Lev) centrifugal rotary blood pump (CRBP) with two-degrees-of-freedom active control is promising for safe and long-term support of circulation. In this study, Mag-Lev CRBP controllability and impeller behavior were studied in the simulated heart failure circulatory model. A pneumatically driven pulsatile blood pump (Medos VAD [ventricular assist device]-54 mL) was used to simulate the left ventricle (LV). The Mag-Lev CRBP was placed between the LV apex and aortic compliance tank simulating LV assistance. The impeller behavior in five axes (x, y, z, theta, and phi) was continuously monitored using five eddy current sensors. The signals of the x- and y-axes were used for feedback active control, while the behaviors of the other three axes were passively controlled by the permanent magnets. In the static mock circuit, the impeller movement was controlled to within +/-10-+/-20 microm in the x- and y-axes, while in the pulsatile circuit, LV pulsation was modulated in the impeller movement with the amplitude being 2-22 microm. The amplitude of impeller movement measured at 1800 rpm with the simulated failing heart (peak LV pressure [LVP] = 70 mm Hg, mean aortic pressure [AoP(mean)] = 55 +/- 20 mm Hg, aortic flow = 2.7 L/min) was 12.6 microm, while it increased to 19.2 microm with the recovered heart (peak LVP = 122 mm Hg, AoP(mean) = 100 +/- 20 mm Hg, aortic flow = 3.9 L/min). The impeller repeated the reciprocating movement from the center of the pump toward the outlet port with LV pulsation. Angular rotation (theta, phi) was around +/-0.002 rad without z-axis displacement. Power requirements ranged from 0.6 to 0.9 W. Five-axis impeller behavior and Mag-Lev controller stability were demonstrated in the pulsatile mock circuit. Noncontact drive and low power requirements were shown despite the effects of LV pulsation. The impeller position signals in the x- and y-axes reflected LV function. The Mag-Lev CRBP is effective not only for noncontact low power control of the impeller, but also for diagnosis of cardiac function noninvasively.
Keywords:Left ventricular function    Centrifugal blood pump    Mechanically circulatory support device    Magnetic bearing    Impeller behavior
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号