首页 | 本学科首页   官方微博 | 高级检索  
检索        


Of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements, only 3,4-dihydroxyphenylacetic acid has antiproliferative activity
Authors:Gao Kun  Xu Anlong  Krul Cyrille  Venema Koen  Liu Yong  Niu Yantao  Lu Jinxiu  Bensoussan Liath  Seeram Navindra P  Heber David  Henning Susanne M
Institution:State Key Laboratory of Biocontrol, Department of Biochemistry and Center for Biopharmaceutical Research, College of Life Sciences, Sun Yatsen (Zhongshan) University, Guangzhou, China.
Abstract:Dietary flavonoids are poorly absorbed from the gastrointestinal tract. Colonic bacteria convert flavonoids into smaller phenolic acids (PA), which can be absorbed into the circulation and may contribute to the chemopreventive activity of the parent compounds. The purpose of our study was to determine whether flavonoids from green and black tea (GT, BT), citrus fruit with rutin (CF+R) and soy (S) supplements exposed to the same conditions in a dynamic in vitro model of the colon (TIM-2) will form the same phenolic acid products of microbial metabolism. About 600 mg of flavonoids from GT, BT, CF+R and S extracts were infused at t = 0 and 12 h into the TIM-2. Samples from the lumen and dialysate were collected at t = 0,4,8,12,16,24 and 28h. The flavonoid and PA concentrations were measured by HPLC and GC-MS. GT, BT, and CF+R formed 3-methoxy-4-hydroxyphenylacetic acid (3M4HPAA), 4-hydroxyphenyl acetic acid (4HPAA), 3,4-dihydroxyphenylacetic acid (3,4DHPAA), and 3-(3-hydroxyphenyl) propionic acid (3,3HPPA). BT flavonoids were also metabolized to 2,4,6-trihydroxybenzoic acid (2,4,6THBA) and CF+R flavonoids to 3-(4-hydroxy-3-methoxyphenyl) propionic acid (3,4H3MPPA), 3-hydroxyphenyl acetic acid (3HPAA) and a small amount of hippuric acid. After S infusion, we found 3M4HPAA and 4HPAA only. Among these phenolic acids, only 3,4DHPAA exhibited antiproliferative activity in prostate and colon cancer cells. 3,4DHPAA was significantly (P < 0.005) more inhibitory in colon cancer cells (HCT116) compared with an immortalized normal intestinal epithelial cell line (IEC6). In summary, fermentation by intestinal microbes of GT, BT, C+R, and S flavonoids resulted in the conversion to the same major phenolic acids.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号