首页 | 本学科首页   官方微博 | 高级检索  
检索        


Application of CYP3A4 in vitro data to predict clinical drug-drug interactions; predictions of compounds as objects of interaction
Authors:Youdim Kuresh A  Zayed Aref  Dickins Maurice  Phipps Alex  Griffiths Michelle  Darekar Amanda  Hyland Ruth  Fahmi Odette  Hurst Susan  Plowchalk David R  Cook Jack  Guo Feng  Obach R Scott
Institution:Pfizer Global Research and Development, Department of Pharmacokinetics, Dynamics and Metabolism, Sandwich, Kent, UK,;Clinical Research and Development, Sandwich, Kent, UK,;Clinical Research and Development Statistics, Sandwich, Kent, UK,;Loughborough University, Department of Chemistry, Loughborough, Leicestershire, UK,;Pfizer Global Research and Development, Department of Pharmacokinetics, Dynamics and Metabolism, Groton, CT, USA and;Pfizer Global Research and Development, Department of Pharmacokinetics, Dynamics and Metabolism, Ann Arbor, MI, USA
Abstract:

AIMS

The aim of this study was to explore and optimize the in vitro and in silico approaches used for predicting clinical DDIs. A data set containing clinical information on the interaction of 20 Pfizer compounds with ketoconazole was used to assess the success of the techniques.

METHODS

The study calculated the fraction and the rate of metabolism of 20 Pfizer compounds via each cytochrome P450. Two approaches were used to determine fraction metabolized (fm); 1) by measuring substrate loss in human liver microsomes (HLM) in the presence and absence of specific chemical inhibitors and 2) by measuring substrate loss in individual cDNA expressed P450s (also referred to as recombinant P450s (rhCYP)) The fractions metabolized via each CYP were used to predict the drug–drug interaction due to CYP3A4 inhibition by ketoconazole using the modelling and simulation software SIMCYP®.

RESULTS

When in vitro data were generated using Gentest supersomes, 85% of predictions were within two-fold of the observed clinical interaction. Using PanVera baculosomes, 70% of predictions were predicted within two-fold. In contrast using chemical inhibitors the accuracy was lower, predicting only 37% of compounds within two-fold of the clinical value. Poorly predicted compounds were found to either be metabolically stable and/or have high microsomal protein binding. The use of equilibrium dialysis to generate accurate protein binding measurements was especially important for highly bound drugs.

CONCLUSIONS

The current study demonstrated that the use of rhCYPs with SIMCYP® provides a robust in vitro system for predicting the likelihood and magnitude of changes in clinical exposure of compounds as a consequence of CYP3A4 inhibition by a concomitantly administered drug.

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT

  • Numerous retrospective analyses have shown the utility of in vitro systems for predicting potential drug–drug interactions (DDIs).
  • Prediction of DDIs from in vitro data is commonly obtained using estimates of enzyme Ki, inhibitor and substrate concentrations and absorption rate for substrate and inhibitor.

WHAT THIS STUDY ADDS

  • Using a generic approach for all test compounds, the findings from the current study showed the use of recombinant P450s provide a more robust in vitro measure of P450 contribution (fraction metabolized, fm) than that achieved when using chemical inhibitors in combination with human liver microsomes, for the prediction of potential CYP3A4 drug–drug interactions prior to clinical investigation.
  • The current study supported the use of SIMCYP®, a modelling and simulation software in utilizing the in vitro measures in the prediction of potential drug–drug interactions.
Keywords:cytochrome P450  drug-drug interactions  baculosomes  supersomes  CYP3A4  ketoconazole
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号