首页 | 本学科首页   官方微博 | 高级检索  
     


Insulin-like growth factor binding protein-6 transgenic mice: postnatal growth, brain development, and reproduction abnormalities
Authors:Bienvenu Géraldine  Seurin Danielle  Grellier Pascale  Froment Pascal  Baudrimont Marielle  Monget Philippe  Le Bouc Yves  Babajko Sylvie
Affiliation:Institut National de la Santé et de la Recherche Médicale, Unité 515, H?pital Saint Antoine, 184 rue du Faubourg St. Antoine, 75571 Paris Cedex 12, France. U515@st-antoine.inserm.fr.
Abstract:In biological fluids, IGFs bind to six distinct binding proteins (IGFBP-1 to -6). IGFBP-6 is of particular interest because it has been shown to inhibit proliferation in many cell types and to be synthesized in the central nervous system (CNS). It also has the strongest affinity for IGF-II among the IGFBPs. To study IGFBP-6 function in vivo, we established IGFBP-6 transgenic mice in which human IGFBP-6 (hIGFBP-6) cDNA is expressed under the control of the glial fibrillary acidic protein (GFAP) promoter. Northern and Western blot analysis revealed strong transgene expression in the CNS. With histological examination of the CNS, cerebellum size and weight proved to be reduced by about 25% and 35%, respectively, and there were smaller numbers of differentiated, GFAP-expressing astrocytes than in wild-type mice. Between birth and 1 month of age, transgenic mice had high levels of circulating hIGFBP-6 and reduced plasma IGF-I, and, as a result, body weight was significantly reduced. Reproductive physiology was also affected. Litter size was reduced by 27% when wild-type males were mated with 3-month-old transgenic females and by 66% when mated with 6-month-old transgenic females. Histological examination of ovaries of transgenic mice revealed a marked decrease in weight and in the number of corpora lutea, suggesting altered ovulation, and circulating LH levels were reduced by 50%. Our results indicate that this new model of transgenic mouse may prove to be a useful tool in elucidating the in vivo role of IGFBP-6 in the brain, especially in regard to hypothalamic control, and in reproductive physiology.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号