首页 | 本学科首页   官方微博 | 高级检索  
     


Endothelialization and altered hematopoiesis by persistent Etv2 expression in mice
Authors:Hayashi Misato  Pluchinotta Matteo  Momiyama Asuka  Tanaka Yosuke  Nishikawa Shin-Ichi  Kataoka Hiroshi
Affiliation:Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan.
Abstract:Etv2 is a master gene for the commitment of hematopoietic/endothelial cells and is a potent inducer of endothelial/hematopoietic cells from embryonic stem cells. Etv2 is highly expressed in endothelial/hematopoietic precursors but is downregulated when they are differentiated, indicating that Etv2 should have transient but not constitutive function. However, relatively little attention has been paid to the importance of transient Etv2 expression. To determine whether transient Etv2 expression is essential to normal development and cell differentiation, we generated mice that constitutively express Etv2 from a Cre-activatable ROSA26 locus in endothelial/hematopoietic, somite, or neuronal lineages. Constitutive Etv2 expression caused profound phenotypes in hematopoietic/endothelial cells, with little effect on somite or neuronal lineages. In hematopoietic/endothelial lineages, constitutive Etv2 expression induced by Tie-2 Cre transgene caused abnormal yolk sac vasculature. Prolonged vascular endothelial cadherin expression and decreased B lymphopoiesis were observed in Etv2 expressing vascular endothelial cadherin(+)/CD45(+) cells, indicating that Etv2 forces endothelial program on hematopoietic cells. Etv2 expression in adult hematopoietic cells by Vav-iCre transgene also conferred an endothelial phenotype on hematopoietic stem cells and suppressed hematopoiesis, with erythropoiesis severely affected. We conclude that constitutive Etv2 expression perturbs vascular development and hematopoiesis. While promoting hematopoiesis/vasculogenesis, Etv2 expression should be tightly regulated to achieve normal vascular development and hematopoiesis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号