首页 | 本学科首页   官方微博 | 高级检索  
检索        


Pharmacogenetics of P450 oxidoreductase: effect of sequence variants on activities of CYP1A2 and CYP2C19
Authors:Agrawal Vishal  Huang Ningwu  Miller Walter L
Institution:Department of Pediatrics, University of California, San Francisco, California 94143-0978, USA.
Abstract:OBJECTIVES: All microsomal cytochrome P450s enzymes, including those that metabolize the majority of clinically used drugs, require electron transfer through P450 oxidoreductase (POR). Mutations in human POR cause altered steroidogenesis and congenital malformations, but the clinical effects on drug metabolism are unclear. We examined the effects of POR sequence variants on two drug-metabolizing P450 enzymes, CYP1A2 and CYP2C19. METHODS: Our previous sequencing of the human POR gene in POR-deficient patients and in 842 normal individuals identified 35 sequence variants. We expressed these 35 POR sequence variants in bacteria, reconstituted them with the CYP enzymes in vitro, and assayed their activities with human CYP1A2 and CYP2C19. RESULTS: POR variants affected the activities of these enzymes to different extents. Disease-causing POR mutations A287P and R457H diminished catalysis by CYP1A2 and CYP2C19 to barely detectable levels. POR A503V, a polymorphism found in 28% of alleles in the normal population, had 85% of wild-type activity with CYP1A2 and 113% of wild-type activity with CYP2C19. Q153R, a disease-causing mutation that severely impaired steroidogenic activity and cytochrome c reduction, increased the activity of CYP1A2 to 144% and CYP2C19 activity to 284% of control. CONCLUSION: The activity of individual POR mutants may vary greatly depending on the electron recipient used to assay activity. Thus, the activity of a POR mutant to support catalysis by a particular P450 enzyme cannot be predicted by the activity of that POR mutant in an assay with a different P450 or with cytochrome c.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号