首页 | 本学科首页   官方微博 | 高级检索  
     


Stress granule formation,disassembly, and composition are regulated by alphavirus ADP-ribosylhydrolase activity
Authors:Aravinth Kumar Jayabalan  Srivathsan Adivarahan  Aakash Koppula  Rachy Abraham  Mona Batish  Daniel Zenklusen  Diane E. Griffin  Anthony K. L. Leung
Abstract:While biomolecular condensates have emerged as an important biological phenomenon, mechanisms regulating their composition and the ways that viruses hijack these mechanisms remain unclear. The mosquito-borne alphaviruses cause a range of diseases from rashes and arthritis to encephalitis, and no licensed drugs are available for treatment or vaccines for prevention. The alphavirus virulence factor nonstructural protein 3 (nsP3) suppresses the formation of stress granules (SGs)—a class of cytoplasmic condensates enriched with translation initiation factors and formed during the early stage of infection. nsP3 has a conserved N-terminal macrodomain that hydrolyzes ADP-ribose from ADP-ribosylated proteins and a C-terminal hypervariable domain that binds the essential SG component G3BP1. Here, we show that macrodomain hydrolase activity reduces the ADP-ribosylation of G3BP1, disassembles virus-induced SGs, and suppresses SG formation. Expression of nsP3 results in the formation of a distinct class of condensates that lack translation initiation factors but contain G3BP1 and other SG-associated RNA-binding proteins. Expression of ADP-ribosylhydrolase–deficient nsP3 results in condensates that retain translation initiation factors as well as RNA-binding proteins, similar to SGs. Therefore, our data reveal that ADP-ribosylation controls the composition of biomolecular condensates, specifically the localization of translation initiation factors, during alphavirus infection.

Biomolecular condensates are prevalent in cells and critical for a range of cellular functions, including RNA metabolism, embryonic cell fate specification, and neuronal activity (13). While condensates often dynamically exchange components with the surrounding milieu, the overall composition of these cellular structures remains distinct (4). How cells control the specific composition of these condensates remains unclear. Stress granules (SGs), one of the best characterized biomolecular condensates, are RNA–protein assemblies formed in response to a variety of environmental cues (1). While SG composition can vary with the type of stress cue (5), certain common components, such as Ras GTP-activating protein-binding proteins G3BP1/2, are essential for formation of SGs (6, 7). Dysregulation of SG formation and disassembly is implicated in the pathogenesis of diseases, including viral infection, cancer, and neurodegeneration (2, 810).SG formation and disassembly are tightly regulated during viral infection, often reflecting cellular translation status (1114). In the early phase of many viral infections, the presence of double-stranded viral RNAs (vRNAs) activate protein kinase R (PKR), resulting in eIF2α phosphorylation, messenger RNA (mRNA) translation inhibition, and formation of SGs enriched with translation initiation factors such as eIF3b. However, in later infection stages, many viruses instead suppress SG formation or disassemble SGs altogether. The mechanisms underlying this switch, and its physiological function, remain unclear.SG formation and disassembly are regulated by posttranslational modifications of proteins, including those that conjugate simple chemical groups, attach polypeptides, and add nucleotides as in the case of ADP-ribosylation (1521). ADP-ribosylation refers to the addition of one or more ADP-ribose units onto proteins (2224). In humans, ADP-ribosylation is accomplished primarily by a family of 17 ADP-ribosyltransferases, commonly known as poly(ADP-ribose) polymerases (PARPs). SG components are specifically ADP-ribosylated, and ADP-ribose polymers [i.e., poly(ADP-ribose) or PAR], five PARPs and two isoforms of the degradative enzyme PAR glycohydrolase (PARG) have been localized to these condensates (17, 2527). Overexpression of these PARPs and PARG isoforms induces and suppresses SG formation, respectively, while PARG knockdown delays SG disassembly (17, 26). The noncovalent interaction between PAR and proteins facilitates SG targeting (2527). For example, PAR-mediated targeting regulates TDP-43 localization to SGs and prevents the formation of pathological aggregates in amyotrophic lateral sclerosis (26, 27).The mosquito-borne alphaviruses, which cause a range of diseases from rashes and arthritis to encephalitis, induce SG formation early in infection and later initiate SG disassembly (11, 14, 28, 29). Previous studies have identified the alphaviral nonstructural protein 3 (nsP3), a key factor for virus replication and virulence (3032), as able to suppress SG formation (28, 3335). The alphaviral nsP3 is a tripartite protein composed of a highly conserved macrodomain (MD) in the N terminus, a central zinc-binding domain (ZBD), and a C-terminal hypervariable domain (HVD; ref. 30). Recent studies indicate that the HVD, which is of low complexity, directs alphaviral nsP3 binding to host SG proteins (30, 36). For example, the HVD of chikungunya virus (CHIKV) binds the essential SG components G3BP1 and G3BP2 (33, 37). Given that nsP3 expression increases over the course of viral infection, it has been proposed that nsP3 sequesters G3BP1/2, resulting in the suppression of SG formation during the late phase of infection (28, 29, 34).Here, we report that the expression of the G3BP-binding HVD alone does not suppress SG formation; rather, expression of the N-terminal MD alone can trigger the suppression of this biomolecular condensate. The structural integrity of SGs is dependent on ADP-ribosylation (17), and we and others recently found that the viral MD can remove single ADP-ribose groups, and possibly PAR, from ADP-ribosylated proteins (31, 3840). We therefore hypothesized that MD ADP-ribosylhydrolase activity is required to suppress SG formation across stress conditions, with G3BP1 being a key target substrate. Indeed, we find that MD ADP-ribosylhydrolase activity is critical for disassembling SGs formed by G3BP1 expression and during viral infection. Consistent with this premise, live cell imaging revealed that SGs persist in cells infected with a hydrolase-deficient recombinant CHIKV. ADP-ribosylhydrolase activity is required for altering the composition of biomolecular condensates in nsP3-expressing or virus-infected cells and specifically regulates translation factor localization. Together, these data argue that nsP3 ADP-ribosylhydrolase activity modulates SG formation, disassembly, and composition.
Keywords:ADP-ribosylation   stress granules   biomolecular condensates   alphavirus   macrodomain
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号