首页 | 本学科首页   官方微博 | 高级检索  
     


SLFN11 promotes CDT1 degradation by CUL4 in response to replicative DNA damage,while its absence leads to synthetic lethality with ATR/CHK1 inhibitors
Authors:Ukhyun Jo  Yasuhisa Murai  Sirisha Chakka  Lu Chen  Ken Cheng  Junko Murai  Liton Kumar Saha  Lisa M. Miller Jenkins  Yves Pommier
Affiliation:aDevelopmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20814;bNational Center for Advancing Translational Sciences, Functional Genomics Laboratory, NIH, Rockville, MD, 20850;cInstitute for Advanced Biosciences, Keio University, 997-0052 Yamagata, Japan;dLaboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892
Abstract:Schlafen-11 (SLFN11) inactivation in ∼50% of cancer cells confers broad chemoresistance. To identify therapeutic targets and underlying molecular mechanisms for overcoming chemoresistance, we performed an unbiased genome-wide RNAi screen in SLFN11-WT and -knockout (KO) cells. We found that inactivation of Ataxia Telangiectasia- and Rad3-related (ATR), CHK1, BRCA2, and RPA1 overcome chemoresistance to camptothecin (CPT) in SLFN11-KO cells. Accordingly, we validate that clinical inhibitors of ATR (M4344 and M6620) and CHK1 (SRA737) resensitize SLFN11-KO cells to topotecan, indotecan, etoposide, cisplatin, and talazoparib. We uncover that ATR inhibition significantly increases mitotic defects along with increased CDT1 phosphorylation, which destabilizes kinetochore-microtubule attachments in SLFN11-KO cells. We also reveal a chemoresistance mechanism by which CDT1 degradation is retarded, eventually inducing replication reactivation under DNA damage in SLFN11-KO cells. In contrast, in SLFN11-expressing cells, SLFN11 promotes the degradation of CDT1 in response to CPT by binding to DDB1 of CUL4CDT2 E3 ubiquitin ligase associated with replication forks. We show that the C terminus and ATPase domain of SLFN11 are required for DDB1 binding and CDT1 degradation. Furthermore, we identify a therapy-relevant ATPase mutant (E669K) of the SLFN11 gene in human TCGA and show that the mutant contributes to chemoresistance and retarded CDT1 degradation. Taken together, our study reveals new chemotherapeutic insights on how targeting the ATR pathway overcomes chemoresistance of SLFN11-deficient cancers. It also demonstrates that SLFN11 irreversibly arrests replication by degrading CDT1 through the DDB1–CUL4CDT2 ubiquitin ligase.

Schlafen-11 (SLFN11) is an emergent restriction factor against genomic instability acting by eliminating cells with replicative damage (16) and potentially acting as a tumor suppressor (6, 7). SLFN11-expressing cancer cells are consistently hypersensitive to a broad range of chemotherapeutic drugs targeting DNA replication, including topoisomerase inhibitors, alkylating agents, DNA synthesis, and poly(ADP-ribose) polymerase (PARP) inhibitors compared to SLFN11-deficient cancer cells, which are chemoresistant (1, 2, 4, 817). Profiling SLFN11 expression is being explored for patients to predict survival and guide therapeutic choice (8, 13, 1824).The Cancer Genome Atlas (TCGA) and cancer cell databases demonstrate that SLFN11 mRNA expression is suppressed in a broad fraction of common cancer tissues and in ∼50% of all established cancer cell lines across multiple histologies (1, 2, 5, 8, 13, 25, 26). Silencing of the SLFN11 gene, like known tumor suppressor genes, is under epigenetic mechanisms through hypermethylation of its promoter region and activation of histone deacetylases (HDACs) (21, 23, 25, 26). A recent study in small-cell lung cancer patient-derived xenograft models also showed that SLFN11 gene silencing is caused by local chromatin condensation related to deposition of H3K27me3 in the gene body of SLFN11 by EZH2, a histone methyltransferase (11). Targeting epigenetic regulators is therefore an attractive combination strategy to overcome chemoresistance of SLFN11-deficient cancers (10, 25, 26). An alternative approach is to attack SLFN11-negative cancer cells by targeting the essential pathways that cells use to overcome replicative damage and replication stress. Along these lines, a prior study showed that inhibition of ATR (Ataxia Telangiectasia- and Rad3-related) kinase reverses the resistance of SLFN11-deficient cancer cells to PARP inhibitors (4). However, targeting the ATR pathway in SLFN11-deficient cells has not yet been fully explored.SLFN11 consists of two functional domains: A conserved nuclease motif in its N terminus and an ATPase motif (putative helicase) in its C terminus (2, 6). The N terminus nuclease has been implicated in the selective degradation of type II tRNAs (including those coding for ATR) and its nuclease structure can be derived from crystallographic analysis of SLFN13 whose N terminus domain is conserved with SLFN11 (27, 28). The C terminus is only present in the group III Schlafen family (24, 29). Its potential ATPase activity and relationship to chemosensitivity to DNA-damaging agents (35) imply that the ATPase/helicase of SLFN11 is involved specifically in DNA damage response (DDR) to replication stress. Indeed, inactivation of the Walker B motif of SLFN11 by the mutation E669Q suppresses SLFN11-mediated replication block (5, 30). In addition, SLFN11 contains a binding site for the single-stranded DNA binding protein RPA1 (replication protein A1) at its C terminus (3, 31) and is recruited to replication damage sites by RPA (3, 5). The putative ATPase activity of SLFN11 is not required for this recruitment (5) but is required for blocking the replication helicase complex (CMG-CDC45) and inducing chromatin accessibility at replication origins and promoter sites (5, 30). Based on these studies, our current model is that SLFN11 is recruited to “stressed” replication forks by RPA filaments formed on single-stranded DNA (ssDNA), and that the ATPase/helicase activity of SLFN11 is required for blocking replication progression and remodeling chromatin (5, 30). However, underlying mechanisms of how SLFN11 irreversibly blocks replication in DNA damage are still unclear.Increased RPA-coated ssDNA caused by DNA damage and replication fork stalling also triggers ATR kinase activation, promoting subsequent phosphorylation of CHK1, which transiently halts cell cycle progression and enables DNA repair (32). ATR inhibitors are currently in clinical development in combination with DNA replication damaging drugs (33, 34), such as topoisomerase I (TOP1) inhibitors, which are highly synergistic with ATR inhibitors in preclinical models (35). ATR inhibitors not only inhibit DNA repair, but also lead to unscheduled replication origin firing (36), which kills cancer cells (37, 38) by inducing genomic alterations due to faulty replication and mitotic catastrophe (33).The replication licensing factor CDT1 orchestrates the initiation of replication by assembling prereplication complexes (pre-RC) in G1-phase before cells enter S-phase (39). Once replication is started by loading and activation of the MCM helicase, CDT1 is degraded by the ubiquitin proteasomal pathway to prevent additional replication initiation and ensure precise genome duplication and the firing of each origin only once per cell cycle (39, 40). At the end of G2 and during mitosis, CDT1 levels rise again to control kinetochore-microtubule attachment for accurate chromosome segregation (41). Deregulated overexpression of CDT1 results in rereplication, genome instability, and tumorigenesis (42). The cellular CDT1 levels are tightly regulated by the damage-specific DNA binding protein 1 (DDB1)–CUL4CDT2 E3 ubiquitin ligase complex in G1-phase (43) and in response to DNA damage (44, 45). How CDT1 is recognized by CUL4CDT2 in response to DNA damage remains incompletely known.In the present study, starting with a human genome-wide RNAi screen, bioinformatics analyses, and mechanistic validations, we explored synthetic lethal interactions that overcome the chemoresistance of SLFN11-deficient cells to the TOP1 inhibitor camptothecin (CPT). The strongest synergistic interaction was between depletion of the ATR/CHK1-mediated DNA damage response pathways and DNA-damaging agents in SLFN11-deficient cells. We validated and expanded our molecular understanding of combinatorial strategies in SLFN11-deficient cells with the ATR (M4344 and M6620) and CHK1 (SRA737) inhibitors in clinical development (33, 46, 47) and found that ATR inhibition leads to CDT1 stabilization and hyperphosphorylation with mitotic catastrophe. Our study also establishes that SLFN11 promotes the degradation of CDT1 by binding to DDB1, an adaptor molecule of the CUL4CDT2 E3 ubiquitin ligase complex, leading to an irreversible replication block in response to replicative DNA damage.
Keywords:SLFN11   CDT1   CUL4   ATR/CHK1 inhibitor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号