首页 | 本学科首页   官方微博 | 高级检索  
     


Changes in blood volume and oxygenation level in a working muscle during a crank cycle
Authors:Takaishi Tetsuo  Sugiura Takahiro  Katayama Keisho  Sato Yasutake  Shima Norihiro  Yamamoto Takashi  Moritani Toshio
Affiliation:Institute of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan. takaishi@nsc.nagoya-cu.ac.jp
Abstract:PURPOSE: This study examined circulatory and metabolic changes in a working muscle during a crank cycle in a pedaling exercise with near-infrared spectroscopy (NIRS). METHODS: NIRS measurements sampled under stable metabolic and cadence conditions during incremental pedaling exercise were reordered according to the crank angles whose signals were obtained in eight male subjects. RESULTS: The reordered changes in muscle blood volume during a crank cycle demonstrated a pattern change that corresponded to changes in pedal force and electrical muscle activity for pedal thrust. The top and bottom peaks for muscle blood volume change at work intensities of 180 W and 220 W always preceded (88 +/- 32 and 92 +/- 23 ms, respectively) those for muscle oxygenation changes. Significant differences in the level of NIRS parameters (muscle blood volume and oxygenation level) among work intensities were noted with a common shape in curve changes related to pedal force. In addition, a temporary increase in muscle blood volume following a pedal thrust was detected at work intensities higher than moderate. This temporary increase in muscle blood volume might reflect muscle blood flow restriction caused by pedal thrusts. CONCLUSION: The results suggest that circulatory and metabolic conditions of a working muscle can be easily affected during pedaling exercise by work intensity. The present method, reordering of NIRS parameters against crank angle, serves as a useful measure in providing additional findings of circulatory dynamics and metabolic changes in a working muscle during pedaling exercise.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号