首页 | 本学科首页   官方微博 | 高级检索  
     


Finite element modeling of the cervical spine: role of intervertebral disc under axial and eccentric loads
Authors:Kumaresan S  Yoganandan N  Pintar F A  Maiman D J
Affiliation:

a Department of Neurosurgery, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA

b VA Medical Center, Milwaukee, WI, USA

Abstract:An anatomically accurate, three-dimensional, nonlinear finite element model of the human cervical spine was developed using computed tomography images and cryomicrotome sections. The detailed model included the cortical bone, cancellous core, endplate, lamina, pedicle, transverse processes and spinous processes of the vertebrae; the annulus fibrosus and nucleus pulposus of the intervertebral discs; the uncovertebral joints; the articular cartilage, the synovial fluid and synovial membrane of the facet joints; and the anterior and posterior longitudinal ligaments, interspinous ligaments, capsular ligaments and ligamentum flavum. The finite element model was validated with experimental results: force–displacement and localized strain responses of the vertebral body and lateral masses under pure compression, and varying eccentric anterior-compression and posterior-compression loading modes. This experimentally validated finite element model was used to study the biomechanics of the cervical spine intervertebral disc by quantifying the internal axial and shear forces resisted by the ventral, middle, and dorsal regions of the disc under the above axial and eccentric loading modes. Results indicated that higher axial forces (compared to shear forces) were transmitted through different regions of the disc under all loading modes. While the ventral region of the disc resisted higher variations in axial force, the dorsal region transmitted higher shear forces under all loading modes. These findings may offer an insight to better understand the biomechanical role of the human cervical spine intervertebral disc.
Keywords:Biomechanics   Osteophytes   Disc herniations
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号