首页 | 本学科首页   官方微博 | 高级检索  
检索        


Simultaneous detection of glutathione and lactate using spectral editing at 3 T
Authors:Kimberly L Chan  Karim Snoussi  Richard AE Edden  Peter B Barker
Institution:1. Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA;2. Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA;3. F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
Abstract:Two spectral editing techniques for the simultaneous detection of glutathione (GSH) and lactate (Lac) in the human brain at 3 T are described and evaluated. These methods, ‘sMEGA’ (sinc‐MEscher and GArwood) and ‘DEW’ (Double Editing With), were optimized to detect GSH and Lac simultaneously at 3 T using density‐matrix simulations and validation in phantoms. Simulations to test for co‐edited metabolites within the detected GSH region of the spectrum were also performed. In vivo data were acquired in the midline parietal region of seven subjects using both methods, and compared with conventional MEGA‐PRESS (MEscher and GArwood‐Point RESolved Spectroscopy) acquisitions of GSH and Lac. Simulations and phantom experiments showed that sMEGA and DEW had a high editing efficiency for both GSH and Lac. In the phantom, the editing efficiency of GSH was >88% relative to a conventional GSH MEGA‐PRESS acquisition, whereas, for Lac, the editing efficiency was >95% relative to a conventional Lac MEGA‐PRESS acquisition. Simulations also showed that the editing efficiency of both methods was comparable with separate MEGA‐PRESS acquisitions of the same metabolites. In addition, simulations and in vivo spectra showed that, at a TE of 140 ms, there was a partial overlap between creatine (Cr) and GSH peaks, and that N‐acetyl aspartate/N‐acetyl aspartyl glutamate (NAA/NAAG) were sufficiently resolved from GSH. In vivo measurements showed that both sMEGA and DEW edited GSH and Lac reliably with the same editing efficiency as conventional MEGA‐PRESS acquisitions of the same metabolites, with measured GSH integrals of 2.23 ± 0.51, 2.31 ± 0.38, 2.38 ± 0.53 and measured Lac integrals of 1.72 ± 0.67, 1.55 ± 0.35 and 1.53 ± 0.54 for MEGA‐PRESS, DEW and sMEGA, respectively. Simultaneous detection of GSH and Lac using sMEGA and DEW is possible at 3 T with high editing efficiency.
Keywords:brain  edited magnetic resonance spectroscopy  glutathione  lactate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号