首页 | 本学科首页   官方微博 | 高级检索  
检索        


Diacylglycerol synthesis de novo from glucose by pancreatic islets isolated from rats and humans.
Authors:B A Wolf  R A Easom  M L McDaniel  and J Turk
Institution:Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.
Abstract:Recent evidence has suggested that pancreatic islets isolated from rats synthesize 1,2-diacyl-sn-glycerol (DAG) de novo from glucose and that this process may constitute the long-sought link between the metabolism of glucose and the induction of insulin secretion. The cell-permeant diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol (200 microM) has been found here to amplify both the first and second phases of insulin secretion from perifused human islets. Measurements of the mass of endogenous DAG in human pancreatic islets by enzymatic and by mass spectrometric methods indicate that levels of 200 microM may be achieved under physiologic conditions. Conversion of 14C]glucose to 14C]DAG has been demonstrated here to occur within 60 s of exposure of rat and human islets to stimulatory concentrations of glucose. This process has been found to be a quantitatively minor contributor to the total islet DAG mass after acute stimulation with glucose, however, and glucose has been found not to induce a rise in total islet DAG content within 20 min of induction of insulin secretion. In contrast to the case with rodent islets, two pharmacologic inhibitors of DAG-induced activation of protein kinase C (staurosporine and sphingosine) have been found not to influence glucose-induced insulin secretion from isolated human islets. These findings indicate that de novo synthesis of DAG from glucose does not participate in acute signal-response coupling in islets.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号