首页 | 本学科首页   官方微博 | 高级检索  
检索        


B6.g7 mice reconstituted with BDC2·5 non‐obese diabetic (BDC2·5NOD) stem cells do not develop autoimmune diabetes
Authors:N Rajasekaran  N Wang  Y Hang  C Macaubas  C Rinderknecht  G F Beilhack  J A Shizuru  E D Mellins
Institution:1. Department of Pediatrics, Program in Immunology, Stanford University, , Stanford, CA, USA;2. Department of Pediatrics and Genetics, Division of Human Gene Therapy, Stanford University, , Stanford, CA, USA;3. Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, , Stanford, CA, USA
Abstract:In BDC2·5 non‐obese diabetic (BDC2·5NOD) mice, a spontaneous model of type 1 diabetes, CD4+ T cells express a transgene‐encoded T cell receptor (TCR) with reactivity against a pancreatic antigen, chromogranin. This leads to massive infiltration and destruction of the pancreatic islets and subsequent diabetes. When we reconstituted lethally irradiated, lymphocyte‐deficient B6.g7 (I‐Ag7+) Rag–/– mice with BDC2·5NOD haematopoietic stem and progenitor cells (HSPC; ckit+LinSca‐1hi), the recipients exhibited hyperglycaemia and succumbed to diabetes. Surprisingly, lymphocyte‐sufficient B6.g7 mice reconstituted with BDC2·5NOD HSPCs were protected from diabetes. In this study, we investigated the factors responsible for attenuation of diabetes in the B6.g7 recipients. Analysis of chimerism in the B6.g7 recipients showed that, although B cells and myeloid cells were 98% donor‐derived, the CD4+ T cell compartment contained ~50% host‐derived cells. These host‐derived CD4+ T cells were enriched for conventional regulatory T cells (Tregs) (CD25+forkhead box protein 3 (FoxP3)+] and also for host‐ derived CD4+CD25FoxP3 T cells that express markers of suppressive function, CD73, FR4 and CD39. Although negative selection did not eliminate donor‐derived CD4+ T cells in the B6.g7 recipients, these cells were functionally suppressed. Thus, host‐derived CD4+ T cells that emerge in mice following myeloablation exhibit a regulatory phenoytpe and probably attenuate autoimmune diabetes. These cells may provide new therapeutic strategies to suppress autoimmunity.
Keywords:BDC2·  5NOD  CD73  radio‐resistant T cells  Tregs  type 1 diabetes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号