首页 | 本学科首页   官方微博 | 高级检索  
     


Colchicine encapsulation within poly(ethylene glycol)-coated poly(lactic acid)/poly(epsilon-caprolactone) microspheres-controlled release studies
Authors:Das G S  Rao G H  Wilson R F  Chandy T
Affiliation:Department of Cardiology, University of Minnesota, Minneapolis 55455, USA.
Abstract:Smooth muscle cell proliferation plays a major role in the genesis of restenosis after angioplasty or vascular injury. Local delivery of agents capable of modulating vascular responses have the potential to prevent restenosis. However, the development of injectable microspheres for maintaining high tissue levels of drugs at the site of vascular injury is a major challenge. We demonstrated the possibility of entrapping an antiproliferative agent, colchicine, in polyethylene glycol (PEG)-coated biodegradable microspheres composed of poly(lactic acid)/poly(epsilon-caprolactone) blends, with a mean diameter of 3-6 microm. A solution of colchicine and blends of polylactic acid (PLA)/polycaprolactone (PCL) dissolved in acetone-dichloromethane mixture was poured into an aqueous solution of PEG (or polyvinyl alcohol) with stirring by a high-speed homogenizer to form microspheres. Colchicine recovery in microspheres ranged from 30-50% depending on the emulsification system and the ratio of polymer blends used for the preparations. Scanning electron microscopy revealed that the PLA/PCL microspheres were spherical in shape and had a smooth surface texture. Results of in vitro release studies showed that it is possible to control the colchicine release by choosing the appropriate particle size, loading, and PLA/PCL composition. Water permeability through the PLA membrane was greater, when compared with PCL blends. The amount of drug release also was much higher (58.3%) in PLA compared with PCL (39.3%) microspheres, for 30 days. Therefore, we concluded that the drug release from the microspheres followed a diffusion mechanism where bulk erosion and surface deposition were negligible. These PEG-coated PLA/PCL microspheres may have potential for targeting antiproliferative agents for prolonged periods to treat restenosis.
Keywords:Colchicine  Encapsulation  Controlled  Release  Microspheres  Poly  Ethylene  Glycol  Poly  Epsilon-CAPROLACTONE  Poly  Lactic  Acid
本文献已被 InformaWorld PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号