首页 | 本学科首页   官方微博 | 高级检索  
检索        


Neuroprotective and antiinflammatory properties of a novel demethylated curcuminoid
Authors:Khanna Savita  Park Han-A  Sen Chandan K  Golakoti Trimurtulu  Sengupta Krishanu  Venkateswarlu Somepalli  Roy Sashwati
Institution:Departments of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.
Abstract:A demethylated derivative of curcumin (DC; 67.8% bisdemethylcurcumin, 20.7% demethylmonodemethoxycurcumin, 5.86% bisdemethoxycurcumin, 2.58% demethylcurcumin) was prepared by using a 95% extract of curcumin (C(95); 72.2% curcumin, 18.8% monodemethoxycurcumin, 4.5% bisdemethoxycurcumin). DC increased glutathione and reduced reactive oxygen species (ROS) in HT4 neuronal cells. In a model of glutamate-induced death of HT4, DC was more effective than C(95) in neuroprotection. The protective effects of DC were retained even when DC was withdrawn from culture media after pretreatment. DC treatment, unlike an equal dose of C(95), completely spared glutamate-induced loss of cellular GSH. Both DC and C(95) prevented glutamate-induced elevation of cellular ROS but failed to attenuate glutamate-induced elevation of intracellular calcium. In human microvascular endothelial cells (HMECs) challenged with TNF-alpha, GeneChip analysis revealed that only a subcluster of 23 TNF-alpha-inducible genes were uniquely sensitive to C(95). In sharp contrast, 1,065 TNF-alpha-inducible genes were sensitive to DC but not to C(95), suggesting that DC was more effective in antagonizing the effects of TNF-alpha on HMECs. Functional analysis identified that the genes uniquely sensitive to DC belonged in four functional categories: cytokine-receptor interaction, focal adhesion, cell adhesion, and apoptosis. Real-time PCR as well as ELISA studies demonstrated that TNF-alpha-inducible CXCL10 and CXCL11 expression was sensitive to DC but not to C(95). Flow-cytometry studies recognized ICAM-1 and VCAM-1 as TNF-alpha-inducible adhesion molecules that were uniquely sensitive to DC. Taken together, DC exhibited promising neuroprotective and antiinflammatory properties that must be characterized in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号