首页 | 本学科首页   官方微博 | 高级检索  
检索        


Middle-Down Fragmentation for the Identification and Quantitation of Site-Specific Methionine Oxidation in an IgG1 Molecule
Authors:Gary D Pipes  Phillip Campbell  Pavel V Bondarenko  Bruce A Kerwin  Michael J Treuheit  Himanshu S Gadgil
Institution:Department of Process and Product Development, Amgen, Inc
Abstract:A middle-down LC/MS approach, for the rapid quantitation and characterization of site-specific methionine oxidation in a recombinant monoclonal IgG1 molecule, is described. An IgG1 antibody was digested with endoprotease LysC under limited proteolytic conditions to produce two major components; an antigen binding fragment (Fab) and a crystallizable fraction (Fc). These fractions were then reduced to produce three major species; light chain (LC), Fc/2 which is the C terminal region of the heavy chain (HC) and the N-terminal heavy chain region (Fd). These three fragments were separated by reversed-phase HPLC using a diphenyl column. The diphenyl column resolved site-specific methionine oxidation in all three subunits. Middle- down N-terminal sequencing with a LCT premier mass spectrometer was used to identify the sites of oxidation in the LC. Sites of oxidation in the Fc/2 were identified using middle-down collision-induced dissociation (CID) on a Qtof premier. This method allowed for the rapid quantitation and identification of oxidation on each methionine residue in an IgG1 molecule.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号