首页 | 本学科首页   官方微博 | 高级检索  
     


Bisphosphonate-decorated lipid nanoparticles designed as drug carriers for bone diseases
Authors:Wang Guilin  Mostafa Nesrine Z  Incani Vanessa  Kucharski Cezary  Uludağ Hasan
Affiliation:Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada.
Abstract:A conjugate of distearoylphosphoethanolamine-polyethylene glycol with 2-(3-mercaptopropylsulfanyl)-ethyl-1,1-bisphosphonic acid (thiolBP) was synthesized and incorporated into micelles and liposomes to create mineral-binding nanocarriers for therapeutic agents. The micelles and liposomes were used to encapsulate the anticancer drug doxorubicin (DOX) and a model protein lysozyme (LYZ) by using lipid film hydration (LFH) and reverse-phase evaporation vesicle (REV) methods. The results indicated that the micelles and LFH-derived liposomes were better at DOX loading than the REV-derived liposomes, while the REV method was preferable for encapsulating LYZ. The affinity of the micellar and liposomal formulations to hydroxyapatite (HA) was assessed in vitro, and the results indicated that all the thiolBP-incorporated nanocarriers had stronger HA affinity than their counterparts without thiolBP. The thiolBP-decorated liposomes also displayed a strong binding to a collagen/HA composite scaffold in vitro. More importantly, thiolBP-decorated liposomes gave increased retention in the collagen/HA scaffolds after subcutaneously implantation in rats. The designed liposomes were able to entrap the bone morphogenetic protein-2 in a bioactive form, indicating that the proposed nanocarriers could deliver bioactive factors locally in mineralized scaffolds for bone tissue engineering.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号