首页 | 本学科首页   官方微博 | 高级检索  
检索        


Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats
Authors:Zhao Li-Ru  Duan Wei-Ming  Reyes Morayma  Keene C Dirk  Verfaillie Catherine M  Low Walter C
Institution:Department of Neurosurgery, University of Minnesota, 55455, USA.
Abstract:There is now evidence to suggest that bone marrow mesenchymal stem cells (MSCs) not only differentiate into mesodermal cells, but can also adopt the fate of endodermal and ectodermal cell types. In this study, we addressed the hypotheses that human MSCs can differentiate into neural cells when implanted in the brain and restore sensorimotor function after experimental stroke. Purified human MSCs were grafted into the cortex surrounding the area of infarction 1 week after cortical brain ischemia in rats. Two and 6 weeks after transplantation animals were assessed for sensorimotor function and then sacrificed for histological examination. Ischemic rats that received human MSCs exhibited significantly improved functional performance in limb placement test. Histological analyses revealed that transplanted human MSCs expressed markers for astrocytes (GFAP(+)), oligodendroglia (GalC(+)), and neurons (beta III(+), NF160(+), NF200(+), hNSE(+), and hNF70(+)). The morphological features of the grafted cells, however, were spherical in nature with few processes. Therefore, it is unlikely that the functional recovery observed by the ischemic rats with human MSC grafts was mediated by the integration of new "neuronal" cells into the circuitry of the host brain. The observed functional improvement might have been mediated by proteins secreted by transplanted hMSCs, which could have upregulated host brain plasticity in response to experimental stroke.
Keywords:bone marrow  stem cell  transplantation  brain ischemia  stroke  middle cerebral artery occlusion  human  rat
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号