GABA(A)-dependent chloride influx modulates reversal potential of GABA(B)-mediated IPSPs in hippocampal pyramidal cells |
| |
Authors: | Lopantsev V Schwartzkroin P A |
| |
Affiliation: | Department of Neurological Surgery, University of Washington, Seattle, Washington 98195-6470, USA. |
| |
Abstract: | Changes in intracellular chloride concentration, mediated by chloride influx through GABA(A) receptor-gated channels, may modulate GABA(B) receptor-mediated inhibitory postsynaptic potentials (GABA(B) IPSPs) via unknown mechanisms. Recording from CA3 pyramidal cells in hippocampal slices, we investigated the impact of chloride influx during GABA(A) receptor-mediated IPSPs (GABA(A) IPSPs) on the properties of GABA(B) IPSPs. At relatively positive membrane potentials (near -55 mV), mossy fiber--evoked GABA(B) IPSPs were reduced (compared with their magnitude at -60 mV) when preceded by GABA(A) receptor--mediated chloride influx. This effect was not associated with a correlated reduction in membrane permeability during the GABA(B) IPSP. The mossy fiber--evoked GABA(B) IPSP showed a positive shift in reversal potential (from -99 to -93 mV) when it was preceded by a GABA(A) IPSP evoked at cell membrane potential of -55 mV as compared with -60 mV. Similarly, when intracellular chloride concentration was raised via chloride diffusion from an intracellular microelectrode, there was a reduction of the pharmacologically isolated monosynaptic GABA(B) IPSP and a concurrent shift of GABA(B) IPSP reversal potential from -98 to -90 mV. We conclude that in hippocampal pyramidal cells, in which "resting" membrane potential is near action potential threshold, chloride influx via GABA(A) IPSPs shifts the reversal potential of subsequent GABA(B) receptor--mediated postsynaptic responses in a positive direction and reduces their magnitude. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
| 点击此处可从《Journal of neurophysiology》浏览原始摘要信息 |
|
点击此处可从《Journal of neurophysiology》下载全文 |
|