首页 | 本学科首页   官方微博 | 高级检索  
     


In vivo relationships between the cerebral pharmacokinetics and pharmacodynamics of thiopentone in sheep after short-term administration
Authors:Richard N. Upton  Guy L. Ludbrook  Cliff Grant  Elke C. Gray
Affiliation:(1) Department of Anaesthesia and Intensive Care, Royal Adelaide Hospital, University of Adelaide, North Terrace, 5005 Adelaide, SA, Australia
Abstract:The cerebral kinetics and dynamics of thiopentone after infusions of 250, 500, and 750 mg over 2 min were examined in chronically instrumented sheep (6, 6, and 5 sheep per dose, respectively). The cerebral kinetics were studied by rapid sampling of arterial and dorsal sagittal sinus blood (afferent and efferent blood for the brain, respectively) for 40 min, and could be described by a single flow-limited compartment when arterial concentrations and cerebral blood flow were used as forcing input functions. The half-lives of equilibration between blood and the brain were estimated to be 0.67 (SEM=0.07), 0.57 (0.03) and 0.74 (0.05) min for the 250-, 500- and 750-mg doses, respectively, showing that the cerebral concentrations of thiopentone rapidly equilibrate with the afferent blood concentration. Simultaneous pharmacodynamic measurements included cerebral blood flow via a Doppler flowmeter on the sagittal sinus, and an index of the depth of anesthesia based on an algesimetry method. Thiopentone transiently reduced cerebral blood flow to 82 (SEM=3), 80% (7), and 74% (10) of baseline for the 250−, 500−, and 750-mg doses, respectively, and failure to account for drug-induced changes in cerebral bloof flow in the model overestimated the apparent volume of the brain by 12% for the 500-mg dose. For the 500-mg dose, the changes in cerebral blood flow could be accounted for by an effect compartment with a half-life of 0.82 min for arterial blood, and 0.00 min for sagittal sinus blood, showing the effluent brain concentrations were in equilibrium with this drug effect. The time course of the depth of anesthesia for the 250-mg dose could be accounted for by an effect compartment with a half-life of 1.33 min for arterial blood, and 0.41 min for sagittal sinus blood. Thus, the rate of equilibration between blood and brain could not account for all of this delay. It is concluded that after short-term administration thiopentone equilibrated rapidly with the brain, and that this is consistent with the observation that the magnitude of its clinically relevant effects closely follow the time course of the arterial blood concentrations. Supported by a grant from the National Health and Medical Research Council of Australia
Keywords:thiopentone  pharmacokinetics  pharmacodynamics  brain  cerebral blood flow
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号