Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model |
| |
Authors: | Mortier Siska Faict Dirk Lameire Norbert H De Vriese An S |
| |
Affiliation: | Renal Unit, University Hospital, Ghent, Belgium; and Baxter R and D Europe, Nivelles, Belgium. siska.mortier@Ugent.be |
| |
Abstract: | BACKGROUND: Long-term exposure to standard peritoneal dialysis fluid (PDF) results in alterations in peritoneal morphology and function. Studies investigating the long-term effects on the peritoneum of a low-glucose degradation product (GDP) bicarbonate/lactate-buffered PDF demonstrated its superior biocompatibility. We examined the potential of the low-GDP bicarbonate/lactate-buffered solution to reverse or reduce standard PDF-induced peritoneal alterations. METHODS: Female Wistar rats received twice daily intraperitoneal infusions with either a lactate-buffered solution with 3.86% glucose at pH 5.5 (Dianeal, referred to as standard PDF), or a low-GDP bicarbonate/lactate-buffered solution with 3.86% glucose at physiologic pH (Physioneal, referred to as bicarbonate/lactate PDF) for different periods of time: (1) 12 weeks Dianeal (N= 9); (2) 12 weeks Physioneal (N= 9); (3) 20 weeks Dianeal (N= 11); (4) 20 weeks Physioneal (N= 10); (5) 12 weeks Dianeal followed by 8 weeks Physioneal (N= 10). RESULTS: Chronic standard PDF exposure resulted in loss of ultrafiltration capacity, increased VEGF expression and vascular density, higher advanced glycation end product (AGE) accumulation, up-regulation of TGF-beta expression, and development of fibrosis compared to low-GDP bicarbonate/lactate-buffered PDF. The PDF-induced alterations were time-dependent. Crossover from standard PDF to low-GDP bicarbonate/lactate PDF resulted in a less impaired ultrafiltration (UF), less pronounced VEGF expression and neoangiogenesis, and less severe AGE accumulation, TGF-beta expression, and fibrosis compared to continuous standard PDF exposure for 20 weeks. CONCLUSION: Low-GDP bicarbonate/lactate-buffered PDF has the potential to slow down standard PDF-induced peritoneal membrane damage. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|