首页 | 本学科首页   官方微博 | 高级检索  
     

基于LMS回归的一步M估计与加权最小二乘估计
引用本文:王彤 王琳娜. 基于LMS回归的一步M估计与加权最小二乘估计[J]. 现代预防医学, 1999, 26(3): 281-283
作者姓名:王彤 王琳娜
作者单位:山西医科大学卫生统计教研室!030001
基金项目:全国统计科学研究计划基金!98030,山西省归国人员基金
摘    要:探讨在GM假设条件不满足情况下对线性回归模型的稳健估计方法。方法:介绍了估计的稳健性尺度和有效性的概念,采用基于LMS估计的M估计及加权最小二乘估计做稳健回归。结果:通过对一个模拟数据的分析,说明这两种稳健估计结果均优于经典的M估计及LS估计。结论:本文介绍的两种估计方法同时具有较高的稳健性及有效性,并可作近似的稳健推断。

关 键 词:稳健回归  LMS估计  M估计  加权最小二乘估计

ONE-STEP M ESTIMATOR AND REWEIGHTED LEAST SQUARES ESTIMATOR BASED ON LEAST MEDIAN OF SQUARES REGRESSION
WANG Tong,el al.. ONE-STEP M ESTIMATOR AND REWEIGHTED LEAST SQUARES ESTIMATOR BASED ON LEAST MEDIAN OF SQUARES REGRESSION[J]. Modern Preventive Medicine, 1999, 26(3): 281-283
Authors:WANG Tong  el al.
Abstract:Objective: To explore robust linear regression estimates when GM condition is not hold for the model. Methods:We introduce the concept of robustness measure and efficiency of an estimator, then use LMS-based M estimator and reweightedleast squares estimator to fit the linear regression model. Results: The analysis of a simulated data shows that these two robust estimates are both super to the traditional M and LS estimates. Conclusions: The estimates we introduced combined both high robustness and high efficiency, and can be used to do some approxiate robust inference.
Keywords:Robust regression LMS estimator M estimator Reweighted least squares estimator
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号