Maturation decreases responsiveness of human bone marrow B lineage cells to stromal-derived factor 1 (SDF-1). |
| |
Authors: | E R Fedyk D H Ryyan I Ritterman T A Springer |
| |
Affiliation: | Department of Pathology, The Center For Blood Research and Harvard Medical School, Boston, Massachusetts 02115, USA. |
| |
Abstract: | We compared the chemotactic responsiveness of different subsets of human B lineage cells to stromal derived factor-1 (SDF-1). High percentages (30-40% of input) of purified bone marrow progenitors including non-B lineage progenitors, pro-B cells, and pre-B cells migrated to SDF-1alpha, demonstrating that SDF-1 is an efficacious chemoattractant of these cells. Pro-B cells responded optimally to a lower concentration of SDF-1 than other subsets, demonstrating that SDF-1 is a more potent chemoattractant of this subset. A lower percentage (10-15% of input) of mature B lymphocytes migrated to SDF-1alpha than pro-B cells, demonstrating that responsiveness of B lineage cells to SDF-1 decreases during differentiation. Inhibition by anti-CXCR4 mAb demonstrated that migration of B lineage cells to SDF-1 was completely dependent on CXC chemokine receptor-4 (CXCR4). Mature B cells expressed higher levels of CXCR4 receptors than uncommitted progenitors and pro-B cells, despite differences in responsiveness to SDF-1. CXCR4 receptors expressed by unresponsive and SDF-1-responsive B cells bound SDF-1alpha with similar affinities (K(D) = 1.7-3.3 x 10(-9) M). Therefore, elements downstream from CXCR4 appear to regulate responsiveness of B cells to SDF-1. We speculate that SDF-1 and CXCR4 direct migration of progenitor cells in microenvironments that promote B lymphopoiesis. |
| |
Keywords: | |
|
|