首页 | 本学科首页   官方微博 | 高级检索  
检索        


Family History of Renal Disease Severity Predicts the Mutated Gene in ADPKD
Authors:Moumita Barua  Onur Cil  Andrew D Paterson  Kairon Wang  Ning He  Elizabeth Dicks  Patrick Parfrey  York Pei
Institution:*Division of Nephrology, University of Toronto, and ;Program in Genetics and Genomic Biology, Hospital for Sick Children, Toronto, Ontario, and ;Division of Nephrology, Memorial University, St. Johns, Newfoundland, Canada
Abstract:Mutations of PKD1 and PKD2 account for 85 and 15% of cases of autosomal dominant polycystic kidney disease (ADPKD), respectively. Clinically, PKD1 is more severe than PKD2, with a median age at ESRD of 53.4 versus 72.7 yr. In this study, we explored whether a family history of renal disease severity predicts the mutated gene in ADPKD. We examined the renal function (estimated GFR and age at ESRD) of 484 affected members from 90 families who had ADPKD and whose underlying genotype was known. We found that the presence of at least one affected family member who developed ESRD at age ≤55 was highly predictive of a PKD1 mutation (positive predictive value 100%; sensitivity 72%). In contrast, the presence of at least one affected family member who continued to have sufficient renal function or developed ESRD at age >70 was highly predictive of a PKD2 mutation (positive predictive value 100%; sensitivity 74%). These data suggest that close attention to the family history of renal disease severity in ADPKD may provide a simple means of predicting the mutated gene, which has prognostic implications.Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic renal disorder, with a prevalence of one in 500 to 1000 in the general population. It is the third most common single cause of ESRD in the United States, accounting for 5% of people with ESRD.15 ADPKD is genetically heterogeneous, with two disease genes (PKD1 on chromosome 16 and PKD2 on chromosome 4) accounting for most of the cases. Mutations of PKD1 and PKD2 are thought to account for 85 and 15% of cases, respectively, in linkage-characterized European populations.6,7 Although the clinical manifestations overlap completely between two gene types, there is a strong locus effect on renal disease severity. Patients with PKD1 have significantly more severe renal disease than patients with PKD2, with larger kidneys and earlier onset at ESRD (median age 53.4 versus 72.7 yr, respectively).8,9 By contrast, a weak allelic effect (based on the 5′ versus 3′ location of the germline mutations) on renal disease severity may exist for type 110 but not type 2 ADPKD.11 In addition, significant intrafamilial renal disease variability is evident, which is thought to be due to genetic and environmental modifiers.11,12PKD1 is a large, complex gene containing 46 exons spanning 50 kb, with 33 of these exons at the 5′ end being duplicated elsewhere on chromosome 16. PKD2 is a single-copy gene, consisting of 15 exons spanning a 68-kb genomic region. There is marked allelic heterogeneity for both gene types, with 314 truncating mutations having been described in PKD1 and 91 truncating mutations in PKD2.1,2 PKD1 encodes polycystin 1 (PC1), a large receptor-like protein, and PKD2 encodes polycystin 2 (PC2), a nonselective cation channel that transports calcium. Both PC1 and PC2 physically interact to form a complex that regulates intracellular levels of calcium and are located in the primary cilia of renal tubular cells. Recent studies suggested that the polycystin complex in the primary cilia of renal tubular cells serves as a mechanosensor for urine flow and that dysfunction of this mechanosensor may lead to cellular proliferation and cystogenesis.1,2Recent advances in our understanding of the molecular pathobiology of ADPKD have led to the discovery of a number of drugs (e.g., tolvaptan, somatostatin, mammalian target of rapamycin inhibitors) that may target cyst growth and delay renal disease progression.1,2 Several of these promising drugs are being or will be tested in clinical trials, and disease-modifying treatment may become a reality in the not-too-distant future.1 In this context, the knowledge of ADPKD gene type may allow for the optimization of the design of such clinical trials, and identification of those affected individuals who are most likely to benefit from these novel therapies should they become available; however, the gene type is seldom known for most families in the clinical setting. Although molecular genetic testing, either by linkage or direct mutation analysis, can elucidate the gene type, such testing has its limitations.13 Linkage studies require DNA samples from several affected family members and are of limited utility in small families or de novo cases. Mutation-based screening for ADPKD is expensive and yields a definitive pathogenic mutation in only 42 to 63% of cases because the large and complex structure of PKD1 results in many unclassified missense variants whose pathogenicity often cannot be predicted with complete certainty.14,15In this study, we explored whether renal disease severity can be used as clinical predictors of underlying gene type in families with ADPKD. To predict PKD1, we explored various cutoffs of early age at ESRD as indicative of severe renal disease. To predict PKD2, we explored various cutoffs of late age with renal sufficiency or at ESRD as indicative of milder renal disease. We then evaluated the performance characteristics of these cutoffs to define the optimal criteria for clinical prediction of ADPKD gene type.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号