首页 | 本学科首页   官方微博 | 高级检索  
检索        


Changes in soluble calmodulin following activation of dopamine receptors in rat striatal slices.
Authors:I Hanbauer  J Gimble  W Lovenberg
Institution:Section on Biochemical Pharmacology, Hypertension-Endocrine Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20205 U.S.A.
Abstract:Various molecular forms of cyclic nucleotide phosphodiesterase (PDE) are present in the striatum of rats. While Ca2+ by itself cannot modulate striatal PDE, this ion is essential for the activation of striatal PDE by calmodulin (CaM). Incubation of striatal slices with apomorphine (10?7 M) for 30 min increased the total CaM content of the supernatant fraction. Also the amount of CaM associated with PDE was increased and the Km of PDE for cAMP was lowered. A shorter incubation with dopamine or apomorphine (10 min) failed to increase CaM and to lower the Km of PDE.Haloperidol (10?7 M), a dopamine receptor antagonist, prevented the change in the kinetic profile of PDE elicited by dopamine (2 × 10?7M). Transection of the nigra-striatal fibre bundle by itself did not change the kinetic profile of striatal PDE, but in slices prepared from deafferented striata, a 30 min activation of dopamine receptors still elicited a decrease in the Km of PDE for cAMP. These findings suggest that following a persistent stimulation of dopamine receptors, the CaM content increases in the cytosol because it is mobilized from a pool located in post-synaptic membranes. This mobilization of CaM regulates PDE; thus, regulation of PDE through a translocation of CaM may participate in reducing the functional output of dopamine receptors following persistent stimulation.
Keywords:striatal dopamine receptors  calmodulin  phosphodiesterase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号