首页 | 本学科首页   官方微博 | 高级检索  
检索        


Chondroconductive potential of tantalum trabecular metal
Authors:Gordon Wanda J  Conzemius Michael G  Birdsall Elizabeth  Wannemuehler Yvonne  Mallapragada Surya  Lewallen David G  Yaszemski Michael J  O'Driscoll Shawn W D
Institution:Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA. wgordon@iastate.edu
Abstract:Mesenchymal stem cells or chondrocytes have been implanted into joints in biodegradable matrices in order to improve the quality of healing cartilage defects; however, insufficient biomechanical strength of the construct at implantation is a limiting factor for clinical application. Logically, a construct with better biomechanical characteristics would provide better results. Tantalum trabecular metal (TTM) is osteoconductive and mechanically similar to subchondral bone. The objective of this pilot study was to determine if TTM is also chondroconductive. Small sections of TTM were cultured with emu and canine chondrocytes in static and dynamic culture environments. The sections cultured in dynamic bioreactors were diffusely covered with a cartilaginous matrix. Sections cultured in static conditions had no growth. Histologic evaluation from emu and canine dynamic cultures showed tissue that was heavily populated with mesenchymal cells that resembled chondrocytes, and glycosaminoglycan staining that was distributed throughout the matrix. Type II collagen content in the canine dynamic culture was 84% by SDS-PAGE. Tantalum trabecular metal is chondroconductive in vitro in a dynamic environment when cultured with adult canine or emu chondrocytes. This technology could be expanded to determine if cartilaginous-metallic constructs may be used for joint resurfacing of osteoarthritic joints.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号