首页 | 本学科首页   官方微博 | 高级检索  
     


Atomic layer deposition with rotary reactor for uniform hetero-junction photocatalyst,g-C3N4@TiO2 core–shell structures
Authors:Eunyong Jang  Won Jun Kim  Dae Woong Kim  Seong Hwan Hong  Ijaz Ali  Young Min Park  Tae Joo Park
Affiliation:Department of Advanced Materials Engineering, Hanyang University, Ansan 15588 Korea.; Department of Materials Science & Chemical Engineering, Hanyang University, Ansan 15588 Korea ; Surface Technology Group, Korea Institute of Industrial Technology, Incheon 31056 Korea,
Abstract:A heterojunction of TiO2 grown on g-C3N4 particles is demonstrated using atomic layer deposition (ALD), equipped with a specifically designed rotary reactor for maintaining stable mechanical dispersion of g-C3N4 particles during ALD. The photocatalytic activity of the g-C3N4@ALD-TiO2 core–shell composites was examined using the degradation of rhodamine B dye under visible light irradiation. The optimal composite with 5 ALD cycles of TiO2 exhibited the highest photocatalytic reaction rate constant among the composites with a range of ALD cycles from 2 to 200 cycles, which was observed to be 3 times higher than that of pristine g-C3N4 and 2 times higher than that of g-C3N4@TiO2 composite prepared using a simple impregnation method. The ALD-TiO2 were well-dispersed on the g-C3N4 surface, while TiO2 nanoparticles were agglomerated onto the g-C3N4 in the g-C3N4@TiO2 composite prepared by the impregnation method. This created uniform and stable heterojunctions between the g-C3N4 and TiO2, thus, enhancing the photocatalytic activity.

A heterojunction of TiO2 grown on g-C3N4 particles is demonstrated using atomic layer deposition (ALD), equipped with a specifically designed rotary reactor for maintaining stable mechanical dispersion of g-C3N4 particles during ALD.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号