首页 | 本学科首页   官方微博 | 高级检索  
     


A thermally activated delayed fluorescence exciplex to achieve highly efficient and stable blue and green phosphorescent organic light-emitting diodes
Authors:Dehai Dou  Peng Wu  Zhangcheng Liao  Jian Hao  Jianhua Zhang  Zixing Wang
Affiliation:Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, 149 Yanchang Rd, 200072 P. R. China, Fax: +86-21-56333362, +86-21-56333362 ; Department of Chemistry, Shanghai University, 149 Yanchang Rd, 200072 P. R. China
Abstract:The development of a thermally activated delayed fluorescence (TADF) exciplex with high energy is of great significance in achieving highly efficient blue, green, and red organic light-emitting diodes (OLEDs) for use in full-color displays and white lighting. Highly efficient and stable blue and green phosphorescent OLEDs were demonstrated by employing a TADF exciplex (energy: 2.9 eV) based on 4-substituted aza-9,9′-spirobifluorenes (aza-SBFs). Blue PhOLEDs demonstrated a maximum current efficiency (CE) of 47.9 cd A−1 and an external quantum efficiency (EQE) of 22.5% at 1300 cd m−2 (2.5 times the values of aza-SBF-based systems), with the best blue PhOLED demonstrating a CE, power efficiency (PE) and EQE of 60.3 cd A−1, 52.7 lm W−1, and 26.2%, respectively. Green PhOLEDs exhibited a CE of 78.1 cd A−1 and EQE of 22.5% at 9360 cd m−2, with the best green PhOLED exhibiting a maximum CE, PE, and EQE of 87.4 cd A−1, 101.6 lm W−1, and 24.5%, respectively. The device operational lifetime was improved over 17-fold compared to reference devices because of the high thermal stability of the materials and full utilization of the TADF exciplex energy, indicating their potential for application in commercial OLEDs.

A high energy TADF exciplex (415 nm) based on aza-spirobifluorene derivatives was demonstrated to achieve efficient and stable PhOLEDs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号