首页 | 本学科首页   官方微博 | 高级检索  
     


One-pot facile simultaneous in situ synthesis of conductive Ag–polyaniline composites using Keggin and Preyssler-type phosphotungstates
Authors:Abbas Amini  Marjan Rahimi  Marziyeh Nazari  Chun Cheng  Bijan Samali
Affiliation:Centre for Infrastructure Engineering, Western Sydney University, Kingswood Campus, Bld Z, Locked Bag 1797, Penrith NSW 2751 Australia.; Department of Mechanical Engineering, Australian College of Kuwait, Mishref 13015, Kuwait ; Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad Iran ; Mathematics Department, Australian College of Kuwait, Mishref, Kuwait ; Department of Materials Science and Engineering, South University of Science and Technology, Shenzhen China
Abstract:Two heteropolytungstate structures, Keggin (H3PW12O40) and Preyssler (H14[NaP5W30O110]), were used to synthesize conductive silver nanoparticle–polyaniline–heteropolytungstate (AgNPs–PAni–HPW) nanocomposites. During the oxidative polymerization of aniline, heteropolyblue was generated and served as the reducing agent to stabilize and distribute AgNPs within “PAni–Keggin” and “PAni–Preyssler” matrixes as well as on their surfaces. The prepared nanocomposites and AgNPs were characterized using UV-visible (UV-Vis) and Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), pore size distribution BET, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). UV-Vis results showed different stages of the formation of metal NPs embedded in the polymer–HPW composites, and FT-IR spectra presented characteristic bands of PAni, Keggin and Preyssler anions in the composites confirming no changes in their structures. The presence of AgNPs and an intensely crystalline matrix were confirmed by the XRD pattern. The BET surface areas were found to be 38.426 m2 g−1 for “AgNPs–PAni–Keggin” and 29.977 m2 g−1 for “AgNPs–PAni–Preyssler” nanocomposites with broad distributions of meso-porous structure for both nanocomposites. TEM and SEM images confirmed that the type of heteropolyacids affected the size of AgNPs. This is the first report that uses Keggin and Preyssler-type heteropolytungstate to synthesize “AgNPs–PAni–HPW” nanocomposites in an ambient condition through a low-cost, facile, one-pot, environmentally friendly and simultaneous in situ oxidative polymerization protocol.

Two heteropolytungstate structures, (a) Keggin (H3PW12O40) and (b) Preyssler (H14(NaP5W30O110]), have been used to synthesize conductive silver nanoparticle–polyaniline–heteropolytungstate, (AgNPs–PAni–HPW) nanocomposites.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号