Modeling the effect of interfacial conductivity between polymer matrix and carbon nanotubes on the electrical conductivity of nanocomposites |
| |
Authors: | Yasser Zare Kyong Yop Rhee |
| |
Affiliation: | Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Giheung, Yongin Gyeonggi 446-701 Republic of Korea, Fax: +82 31 202 6693, +82 31 201 2565 |
| |
Abstract: | This article presents the role of interfacial conductivity between the polymer matrix and nanoparticles in the electrical conductivity of polymer carbon nanotube (CNT) nanocomposites (PCNT) by simple equations. In this methodology, CNT size, CNT conductivity, CNT waviness and interfacial conductivity express the effective length and effective concentration of CNT in PCNT. Additionally, the percolation threshold and the percentages of CNT in the conductive networks are defined by the above mentioned terms. Finally, a simple model is developed to suggest the electrical conductivity of PCNT by CNT dimensions, CNT conductivity, CNT waviness, interphase thickness, interfacial conductivity and tunneling distance. The developed model is applied to show the roles of all parameters in the conductivity. Also, the experimental levels of percolation threshold and conductivity for several samples are compared to the predictions to validate the developed equations. The interfacial conductivity directly controls the electrical conductivity of nanocomposites. In addition, thick interphase, low waviness and short tunneling distance increase the conductivity. Moreover, the predictions show good agreement with the experimental measurements, providing evidence in support of the developed equations.This article presents the role of interfacial conductivity between the polymer matrix and nanoparticles in the electrical conductivity of polymer carbon nanotube (CNT) nanocomposites (PCNT) by simple equations. |
| |
Keywords: | |
|
|