首页 | 本学科首页   官方微博 | 高级检索  
     


Methods for evaluating the performance of diagnostic tests in the absence of a gold standard: a latent class model approach
Authors:Garrett Elizabeth S  Eaton William W  Zeger Scott
Affiliation:Johns Hopkins University School of Medicine, Division of Biostatistics, Oncology Center, Baltimore, MD 21205, USA. esg@jhu.edu
Abstract:In many areas of medical research, 'gold standard' diagnostic tests do not exist and so evaluating the performance of standardized diagnostic criteria or algorithms is problematic. In this paper we propose an approach to evaluating the operating characteristics of diagnoses using a latent class model. By defining 'true disease' as our latent variable, we are able to estimate sensitivity, specificity and negative and positive predictive values of the diagnostic test. These methods are applied to diagnostic criteria for depression using Baltimore's Epidemiologic Catchment Area Study Wave 3 data.
Keywords:latent class models  validation  depression  operating characteristics  diagnostic criteria  Markov chain Monte Carlo
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号