首页 | 本学科首页   官方微博 | 高级检索  
检索        


Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering
Authors:Lee Won Kyu  Ichi Takahiro  Ooya Tooru  Yamamoto Takeyuki  Katoh Masakazu  Yui Nobuhiko
Institution:School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan.
Abstract:Highly porous poly(ethylene glycol) (PEG) hydrogel scaffolds crosslinked with hydrolyzable polyrotaxane for cartilage tissue engineering were prepared by a solvent casting/salt leaching technique. The resultant scaffolds have well interconnected microporous structures ranging from 87 to 90%. Pore sizes ranging from 115.5-220.9 microm appeared to be dependent on the size of the sieved sodium chloride particulates. Moreover, a dense surface skin layer was not found on either side of the scaffold surfaces. Using microscopic Alcian blue staining of the chondrocyte-seeded scaffolds, well adhered cells and newly produced glycosaminoglycans (GAG) were confirmed. Following the initial chondrocyte seeding onto the hydrogel scaffolds, the cell number was significantly increased, reaching 149, 877, and 1228 cells/mg of tissue at 8, 15, and 21 days in culture, respectively. The micrograph shows well adhered and spread chondrocytes in the interior pores and a cartilaginous extracellular matrix with a GAG fraction produced from the chondrocytes. Results suggest that the PEG hydrogel scaffolds crosslinked with the hydrolyzable polyrotaxane are a promising candidate for chondrocyte culture.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号