首页 | 本学科首页   官方微博 | 高级检索  
检索        


A new binary compound for the production of 124I via the 124Te(p,n)124I reaction.
Authors:Jonathon A Nye  Miguel A Avila-Rodriguez  Robert J Nickles
Institution:Department of Medical Physics, University of Wisconsin Medical School, 1530 MSC, 1300 University Avenue, Madison, WI 53706, USA. Jonathon.Nye@emoryhealthcare.org
Abstract:The binary compound, aluminum telluride (Al(2)Te(3)), was investigated as a target material for the production of (124)I by way of the (124)Te(p,n)(124)I reaction on a low-energy cyclotron. The high melting point and formation of a glassy matrix upon heating provided a stable target material at irradiations up to 20 microA of 11 MeV protons. The 87% tellurium mass fraction and 95% iodine separation yield led to significantly higher quantities of iodine compared to traditional TeO(2)/6%Al(2)O(3) admixtures. Radiochemical analysis of distilled samples using ion chromatography showed that the product remained in the iodide form while supported in weak buffer solutions. Stable Te impurities in the radioiodine product were less than 0.5 microg following purification by ion exchange chromatography. Average thick target yields of 229+/-18 microCi/microAh were achieved, and typical production runs at 18 microA for three hours yielded 12 mCi at the end-of-bombardment. Total losses of the target material after each irradiation and distillation cycle were approximately 2%.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号