首页 | 本学科首页   官方微博 | 高级检索  
     


Grafts of BDNF-producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy
Authors:Liu Yi  Himes B Timothy  Murray Marion  Tessler Alan  Fischer Itzhak
Affiliation:Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.
Abstract:We have reported that intraspinal transplants of fibroblasts genetically modified to express brain-derived neurotrophic factor (BDNF) promote rubrospinal axon regeneration and functional recovery following subtotal cervical hemisection that completely ablated the rubrospinal tract. In the present study we examined whether these transplants could prevent cell loss and/or atrophy of axotomized Red nucleus neurons. Adult rats received a subtotal spinal cord cervical hemisection followed by a graft of unmodified fibroblasts or fibroblasts producing BDNF into the lesion cavity. One or 2 months later, fluorogold was injected several segments caudal to the lesion-transplant site to retrogradely label those Red nucleus neurons whose axons have regenerated. Unmodified fibroblasts failed to protect against either cell loss or atrophy. Neuron counts and soma-size measurements in Nissl-stained preparations showed a 45% loss of recognizable neurons and 40% atrophy of the surviving neurons in the injured Red nucleus. Grafts of BDNF-producing fibroblasts reduced neuron loss to less than 15% and surviving neurons showed only a 20% decrease in mean soma size. Soma size analysis of fluorogold-labeled Red nucleus neurons indicated that the Red nucleus neurons whose axons regenerated caudal to the graft did not atrophy. We conclude that fibroblasts engineered ex vivo to secrete BDNF and grafted into a partial cervical hemisection promote axon regeneration while reducing cell loss and atrophy of neurons in the Red nucleus. These results suggest that transplants of genetically engineered cells could be an important tool for delivery of therapeutic factors that contribute to the repair of spinal cord injury.
Keywords:spinal cord injury   ex vivo gene therapy   retroviral vector   neurotrophins   retrograde cell death   Red nucleus
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号