首页 | 本学科首页   官方微博 | 高级检索  
检索        


The effect of yield damage on the viscoelastic properties of cortical bone tissue as measured by dynamic mechanical analysis
Authors:Yeni Yener N  Shaffer Richard R  Baker Kevin C  Dong X Neil  Grimm Michele J  Les Clifford M  Fyhrie David P
Institution:Bone and Joint Center, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA. yeni@bjc.hfh.edu
Abstract:We have previously shown, using Dynamic Mechanical Analysis (DMA), that the presence of a defect in cortical bone tissue affects the apparent viscoelastic properties of that bone. However, mechanically induced damage is more complex than a machined defect making it difficult to predict its effect on bone viscoelasticity. We performed DMA measurements before and after introduction of yield damage into cortical bone beams from sheep radii. The specimens were placed in a DMA machine and baseline measurements of storage modulus (E1) and loss factor (tandelta) were performed using a 3-point bending configuration for a frequency range of 1-10 Hz. Measurements were done in all four bending directions (cranial, caudal, medial, and lateral) in random order. After subjecting the specimens to monotonic yield damage in a servohydraulic testing machine with the load applied to the cranial surface, oscillatory tests were repeated. To supplement results from the current experiment, additional analyses were performed on data from experiments where bone was either cut or fatigue-loaded between viscoelasticity measurements. Introduction of mechanical damage increased tan delta and frequency sensitivity of E1, consistent with the assertion that increased energy dissipation in damaged bone might contribute to its increased resistance to fatigue and fracture.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号