首页 | 本学科首页   官方微博 | 高级检索  
检索        


Influence of lesions of the noradrenergic locus coeruleus system on the cerebral metabolic response to bicuculline-induced seizures
Authors:Martin Ingvar  Olle Lindvall  Jaroslava Folbergrova   Bo K Siesjo
Institution:Martin Ingvar, Olle Lindvall, Jaroslava Folbergrova´,Bo K. Siesjo¨,
Abstract:The objective of the present study was to explore if lesions of the ascending noradrenergic pathways, originating in the locus coeruleus, modulate the cerebral metabolic response to bicuculline-induced seizures in rats. Bilateral noradrenergic lesions were performed by 6-hydroxydopamine injections in the caudal mesencephalon, 12–22 days before seizures were induced in animals ventilated on N2O:O2 (75:25). After 5 min of seizures the brain was frozen in situ and cerebral cortex and hippocampus were sampled for analysis. Labile phosphates, glycolytic metabolites, cyclic nucleotides, and free fatty acids were measured. In another series, lesioned animals were used for measurements of cerebral oxygen consumption.The noradrenergic lesions neither modified the electroencephalographically recorded seizure discharge, nor did they alter cerebral oxygen consumption or cerebral energy state. However, when compared to sham-operated animals, those with noradrenergic lesions had significantly higher (115% and 68%) glycogen concentrations and lower (50% and 52%) cyclic AMP concentrations in cerebral cortex and hippocampus, respectively, demonstrating the marked influence of noradrenergic activity on adenylate cyclase activity and glycogenolysis. The lesions failed to modulate the rise in free fatty acids in the cerebral cortex, or the cyclic GMP concentrations in the cerebral cortex and hippocampus. Thus, increased noradrenergic activity during status epilepticus does not seem responsible for lipolysis or for activation of guanylate cyclase.
Keywords:locus coeruleus  cerebral blood flow  cyclic nucleotides  seizure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号