首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of plasma cholesterol on red blood cell oxygen transport
Authors:Buchwald H  O'Dea T J  Menchaca H J  Michalek V N  Rohde T D
Affiliation:Department of Surgery, University of Minnesota, Minneapolis 55455, USA. buchw001@tc.umn.edu
Abstract:1. Oxygen (O2) transfer from the blood to tissues is a function of the red blood cell (RBC) O2 saturation (SO2), the plasma O2 content being negligible. Under conditions of increased tissue O2 demand, the SO2 of arterial blood does not change appreciably (97%); however, the SO2 of mixed venous blood, equal to that of the perfused tissues, can go as low as 20%. 2. Tissue O2 availability is limited by the exposure time to a RBC, which decreases under conditions of maximum stress (< 1 s). If the O2 unloading time was to increase significantly, because of a decrease in the RBC diffusion constant or an increase in the RBC membrane thickness, the RBC O2 unloading time would exceed tissue (e.g. cardiac) transit time and O2 transfer would be impaired. 3. Cholesterol constitutes the non-polar, hydrophobic lipid of the enveloping layer of the RBC membrane. As the cholesterol content of the RBC increases, the fluidity of the membrane decreases and the lipid shell stiffens. 4. Early studies demonstrated that high blood cholesterol concentrations were associated with reduced blood O2 transport; in essence, the haemoglobin dissociation curve was shifted to the left. 5. Current investigations have shown that the cholesterol RBC membrane barrier to O2 diffusion delayed O2 entry into the RBC during saturation and delayed O2 release from the RBC during desaturation. In an analysis of 93 patients divided by their cholesterol concentration into five groups, the percentage change in blood O2 diffusion was inversely proportional to the cholesterol concentration. 6. The RBC membrane cholesterol is in equilibrium with the plasma cholesterol concentration. It stands to reason that as the plasma cholesterol increases, the RBC membrane becomes impaired and O2 transport is reduced. 7. The implications of this new perspective on O2 transport include the ability to increase tissue oxygenation by lowering plasma cholesterol.
Keywords:diffusion  hypercholesterolaemia  membrane fluidity  membrane transport  plasma lipids
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号