首页 | 本学科首页   官方微博 | 高级检索  
     


A comparative assessment of the acute inhalation toxicity of vanadium compounds
Authors:N. Rajendran  JC. Seagrave  L. M. Plunkett
Affiliation:1. Life Sciences Group, IIT Research Institute, Chicago, IL, USA,;2. Applied Biomedical Research, Lovelace Respiratory Research Institute, Albuquerque, NM, USA,;3. Integrative Biostrategies, LLC, Houston, TX, USA, and
Abstract:Vanadium compounds have become important in industrial processes, resulting in workplace exposure potential and are present in ambient air as a result of fossil fuel combustion. A series of acute nose-only inhalation toxicity studies was conducted in both rats and mice in order to obtain comparative data on the acute toxicity potential of compounds used commercially. V2O3, V2O4, and V2O5, which have different oxidation states (+3,?+4,?+5, respectively), were delivered as micronized powders; the highly water-soluble and hygroscopic VOSO4 (+4) could not be micronized and was instead delivered as a liquid aerosol from an aqueous solution. V2O5 was the most acutely toxic micronized powder in both species. Despite its lower overall percentage vanadium content, a liquid aerosol of VOSO4 was more toxic than the V2O5 particles in mice, but not in rats. These data suggest that an interaction of characteristics, i.e., bioavailability, solubility and oxidation state, as well as species sensitivity, likely affect the toxicity potential of vanadium compounds. Based on clinical observations and gross necropsy findings, the lung appeared to be the target organ for all compounds. The level of hazard posed will depend on the specific chemical form of the vanadium. Future work to define the inhalation toxicity potential of vanadium compounds of various oxidation states after repeated exposures will be important in understanding how the physico-chemical and biological characteristics of specific vanadium compounds interact to affect toxicity potential and the potential risks posed to human health.
Keywords:Vanadium  inhalation toxicity  in-vitro solubility  metal toxicity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号