首页 | 本学科首页   官方微博 | 高级检索  
     


Radiation Disrupts the Protective Function of the Spinal Meninges in a Mouse Model of Tumor-induced Spinal Cord Compression
Authors:Takaki Shimizu  Satoru Demura  Satoshi Kato  Kazuya Shinmura  Noriaki Yokogawa  Noritaka Yonezawa  Norihiro Oku  Ryo Kitagawa  Makoto Handa  Ryohei Annen  Takayuki Nojima  Hideki Murakami  Hiroyuki Tsuchiya
Affiliation:T. Shimizu, S. Demura, S. Kato, K. Shinmura, N. Yokogawa, N. Yonezawa, N. Oku, R. Kitagawa, M. Handa, R. Annen, T. Nojima, H. Tsuchiya, Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan;H. Murakami, Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
Abstract:BackgroundRecent advances in multidisciplinary treatments for various cancers have extended the survival period of patients with spinal metastases. Radiotherapy has been widely used to treat spinal metastases; nevertheless, long-term survivors sometimes undergo more surgical intervention after radiotherapy because of local tumor relapse. Generally, intradural invasion of a spinal tumor seldom occurs because the dura mater serves as a tissue barrier against tumor infiltration. However, after radiation exposure, some spinal tumors invade the dura mater, resulting in leptomeningeal dissemination, intraoperative dural injury, or postoperative local recurrence. The mechanisms of how radiation might affect the dura have not been well-studied.Questions/purposesTo investigate how radiation affects the spinal meninges, we asked: (1) What is the effect of irradiation on the meningeal barrier’s ability to protect against carcinoma infiltration? (2) What is the effect of irradiation on the meningeal barrier’s ability to protect against sarcoma infiltration? (3) What is the effect of irradiation on dural microstructure observed by scanning electron microscopy (SEM)? (4) What is the effect of irradiation on dural microstructure observed by transmission electron microscopy (TEM)?MethodsEighty-four 10-week-old female ddY mice were randomly divided into eight groups: mouse mammary tumor (MMT) implantation 6 weeks after 0-Gy irradiation (nonirradiation) (n = 11), MMT implantation 6 weeks after 20-Gy irradiation (n = 10), MMT implantation 12 weeks after nonirradiation (n = 10), MMT implantation 12 weeks after 20-Gy irradiation (n = 11), mouse osteosarcoma (LM8) implantation 6 weeks after nonirradiation (n = 11), LM8 implantation 6 weeks after 20-Gy irradiation (n = 11), LM8 implantation 12 weeks after nonirradiation (n = 10), and LM8 implantation 12 weeks after 20-Gy irradiation (n = 10); female mice were used for a mammary tumor metastasis model and ddY mice, a closed-colony mice with genetic diversity, were selected to represent interhuman diversity. Mice in each group underwent surgery to generate a tumor-induced spinal cord compression model at either 6 weeks or 12 weeks after irradiation to assess changes in the meningeal barrier’s ability to protect against tumor infiltration. During surgery, the mice were implanted with MMT (representative of a carcinoma) or LM8 tumor. When the mice became paraplegic because of spinal cord compression by the growing implanted tumor, they were euthanized and evaluated histologically. Four mice died from anesthesia and 10 mice per group were euthanized (MMT-implanted groups: MMT implantation occurred 6 weeks after nonirradiation [n = 10], 6 weeks after irradiation [n = 10], 12 weeks after nonirradiation [n = 10], and 12 weeks after irradiation [n = 10]; LM8-implanted groups: LM8 implantation performed 6 weeks after nonirradiation [n = 10], 6 weeks after irradiation [n = 10], 12 weeks after nonirradiation [n = 10], and 12 weeks after irradiation [n = 10]); 80 mice were evaluated. The spines of the euthanized mice were harvested; hematoxylin and eosin staining and Masson’s trichrome staining slides were prepared for histologic assessment of each specimen. In the histologic assessment, intradural invasion of the implanted tumor was graded in each group by three observers blinded to the type of tumor, presence of irradiation, and the timing of the surgery. Grade 0 was defined as no intradural invasion with intact dura mater, Grade 1 was defined as intradural invasion with linear dural continuity, and Grade 2 was defined as intradural invasion with disruption of the dural continuity. Additionally, we euthanized 12 mice for a microstructural analysis of dura mater changes by two observers blinded to the presence of irradiation. Six mice (three mice in the 12 weeks after nonirradiation group and three mice in the 12 weeks after 20-Gy irradiation group) were quantitatively analyzed for defects on the dural surface with SEM. The other six mice (three mice in the 12 weeks after nonirradiation group and three mice in the 12 weeks after 20-Gy irradiation group) were analyzed for layer structure of collagen fibers constituting dura mater by TEM. In the SEM assessment, the number and size of defects on the dural surface on images (200 μm × 300 μm) at low magnification (× 2680) were evaluated. A total of 12 images (two per mouse) were evaluated for this assessment. The days from surgery to paraplegia were compared between each of the tumor groups using the Kruskal-Wallis test. The scores of intradural tumor invasion grades and the number of defects on dural surface per SEM image were compared between irradiation group and nonirradiation group using the Mann-Whitney U test. Interobserver reliabilities of assessing intradural tumor invasion grades and the number of dural defects on the dural surface were analyzed using Fleiss’κ coefficient. P values < 0.05 were considered statistically significant.ResultsThere was no difference in the median (range) time to paraplegia among the MMT implantation 6 weeks after nonirradiation group, the 6 weeks after irradiation group, the 12 weeks after nonirradiation group, and the 12 weeks after irradiation group (16 days [14 to 17] versus 14 days [12 to 18] versus 16 days [14 to 17] versus 14 days [12 to 15]; χ2 = 4.7; p = 0.19). There was also no difference in the intradural invasion score between the MMT implantation 6 weeks after irradiation group and the 6 weeks after nonirradiation group (8 of 10 Grade 0 and 2 of 10 Grade 1 versus 10 of 10 Grade 0; p = 0.17). On the other hand, there was a higher intradural invasion score in the MMT implantation 12 weeks after irradiation group than the 12 weeks after nonirradiation group (5 of 10 Grade 0, 3 of 10 Grade 1 and 2 of 10 Grade 2 versus 10 of 10 Grade 0; p = 0.02). Interobserver reliability of assessing intradural tumor invasion grades in the MMT-implanted group was 0.94. There was no difference in the median (range) time to paraplegia among in the LM8 implantation 6 weeks after nonirradiation group, the 6 weeks after irradiation group, the 12 weeks after nonirradiation group, and the 12 weeks after irradiation group (12 days [9 to 13] versus 10 days [8 to 13] versus 11 days [8 to 13] versus 9 days [6 to 12]; χ2 = 2.4; p = 0.50). There was also no difference in the intradural invasion score between the LM8 implantation 6 weeks after irradiation group and the 6 weeks after nonirradiation group (7 of 10 Grade 0, 1 of 10 Grade 1 and 2 of 10 Grade 2 versus 8 of 10 Grade 0 and 2 of 10 Grade 1; p = 0.51), whereas there was a higher intradural invasion score in the LM8 implantation 12 weeks after irradiation group than the 12 weeks after nonirradiation group (3 of 10 Grade 0, 3 of 10 Grade 1 and 4 of 10 Grade 2 versus 8 of 10 Grade 0 and 2 of 10 Grade 1; p = 0.04). Interobserver reliability of assessing intradural tumor invasion grades in the LM8-implanted group was 0.93. In the microstructural analysis of the dura mater using SEM, irradiated mice had small defects on the dural surface at low magnification and degeneration of collagen fibers at high magnification. The median (range) number of defects on the dural surface per image in the irradiated mice was larger than that of nonirradiated mice (2 [1 to 3] versus 0; difference of medians, 2/image; p = 0.002) and the median size of defects was 60 μm (30 to 80). Interobserver reliability of assessing number of defects on the dural surface was 1.00. TEM revealed that nonirradiated mice demonstrated well-organized, multilayer structures, while irradiated mice demonstrated irregularly layered structures at low magnification. At high magnification, well-ordered cross-sections of collagen fibers were observed in the nonirradiated mice. However, disordered alignment of collagen fibers was observed in irradiated mice.ConclusionIntradural tumor invasion and disruptions of the dural microstructure were observed in the meninges of mice after irradiation, indicating radiation-induced disruption of the meningeal barrier.Clinical RelevanceWe conclude that in this form of delivery, radiation is associated with disruption of the dural meningeal barrier, indicating a need to consider methods to avoid or limit Postradiation tumor relapse and spinal cord compression when treating spinal metastases so that patients do not experience intradural tumor invasion. Surgeons should be aware of the potential for intradural tumor invasion when they perform post-irradiation spinal surgery to minimize the risks for intraoperative dural injury and spinal cord injury. Further research in patients with irradiated spinal metastases is necessary to confirm that the same findings are observed in humans and to seek irradiation methods that prevent or minimize the disruption of meningeal barrier function.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号