首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of nitric oxide donors on nitric oxide synthase-expressing myenteric neurones in culture.
Authors:M Zandecki  P Raeymaekers  J Janssens  J Tack  P Vanden Berghe
Affiliation:Centre for Gastroenterological Research, Katholieke Universiteit Leuven, Belgium.
Abstract:Previously, we demonstrated that intestinal inflammation leads to a postinflammatory loss of nitric oxide synthase (NOS)-expressing myenteric neurones and motility disturbances. Here, we investigated whether high NO concentrations could be responsible for the decrease in NOS neurones. Myenteric neurone cultures, prepared from guinea-pig small intestine, were incubated with NO donors [sodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1)]. After fixation, NOS neurones were identified by NADPH diaphorase staining and neurone-specific enolase (NSE)-positive neuronal content was assessed with an enzyme-linked immunosorbent assay (ELISA)-based method. Twenty-four hours incubation with SIN-1 (10(-3) mol L(-1)) or SNP (10(-4) mol L(-1) or higher) reduced the number of NADPH diaphorase-positive neurones. SNP incubation did not affect the NSE-positive neuronal content. Shorter incubations (SNP: 4 and 12 h) had no significant effect. The SNP-induced reduction was reversed by glutathione (GSH), but not by NO- or O-scavengers, whereas GSH depletion enhanced the decrease. The NO-dependent guanylate cyclase-blocker 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) did not affect the SNP effect. This reduction can be explained by either specific apoptosis of NOS neurones or downregulation of NOS activity. However, TdT-mediated X-dUTP nick end labelling (TUNEL stainings argue in favour of the latter. In conclusion, the NO donor SNP decreases the number of NOS-expressing myenteric neurones time and concentration dependently, without affecting the amount of neuronal material. Glutathione plays an important protective role.
Keywords:glutathione  myenteric plexus  NADPH diaphorase  neurone culture  nitric oxide donors  nitric oxide synthase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号