Fixed-Bed Modification of Zeolitic Tuffs and Their Application for Cr(VI) Removal |
| |
Authors: | Jolanta Karolina Warchoł ,Paulina Sobolewska,Wł odzimierz Tylus,Roman Petrus |
| |
Affiliation: | 1.Department of Advance Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, C-6 Building, 50-372 Wrocław, Poland;2.Department of Water Purification and Protection, Rzeszów University of Technology, 35-959 Rzeszów, Poland;3.Department of Chemical Engineering, Rzeszów University of Technology, 35-959 Rzeszów, Poland; |
| |
Abstract: | Natural clinoptilolite tuff (CL) and chabazite-clinoptilolite tuff (CH) were modified in fixed-bed column by immobilization of hexadecyltrimethylammonium bromide (HDTMA-Br), then investigated as a sorbent for inorganic anions of Cr(VI). The proposed modification technique combined with surfactant solution batching allows minimizing the surfactant loses through foaming and crystallization and creation of stable organic coverage. The HDTMA loading depended on the mineral composition of the zeolitic tuff, the topology of its external surface, and process conditions. The maximum surface coverage was obtained by gradually dosing surfactant solution in the smallest volume of batches and corresponded up to 100% and 182% of external cation exchange capacity (ECEC) for mono and double layer coverage, respectively. In case of mono layer coverage, modification proceeds until the exhaustion of surfactant in supply solution, while in the double layer one, until equilibrium of HDTMA concentration in both zeolitic and liquid phases was established. The efficiency of Cr(VI) uptake by prepared surface modified zeolites (SMZs) increased with increasing of HDTMA loading. In the case of mono layer SMZs, the capacities of CH-HDTMA and CL-HDTMA were 10.3 and 5.4 mg/g, respectively, while in the case of double layer SMZs, the amount of Cr uptake on CH-HDTMA and CL-HDTMA were 16.8 and 15 mg/g, respectively. Ion exchange is the predominant mechanism of Cr(VI) sorption but it takes place only if modification resulted in at least partial double layer coverage. The XPS analysis reveals Cr(VI) reduction to a less-toxic Cr(III) by the electron donating N-containing groups and by reaction with Fe+2 ions on the zeolite external surface. |
| |
Keywords: | clinoptilolite chabazite HDTMA-Br fixed-bed column modification Cr(VI) removal |
|
|