首页 | 本学科首页   官方微博 | 高级检索  
     


GABAB receptors mediate frequency-dependent depression of excitatory potentials in rat perirhinal cortex in vitro
Authors:Ziakopoulos Z  Brown M W  Bashir Z I
Affiliation:MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol BS8 1TD, UK.
Abstract:Excitatory synaptic transmission in the perirhinal cortex exhibits marked homosynaptic paired pulse depression (PPD) at inter-pulse intervals between 100 and 1000 ms, being maximal at 200 ms. Additionally, there is greater PPD with stimulation of the pathway from the temporal cortex side than with stimulation of the pathway from the entorhinal cortex side. We establish that this frequency-dependent depression relies on the activation of GABAB (gamma-aminobutyric acid) receptors. PPD in both temporal and entorhinal pathways is abolished by either of the selective GABAB receptor antagonists, 3-N[1-(S)-(3, 4-dichlorophenyl)ethyl]amino-2-(S)-hydroxypropyl-p-benzyl-phosphinic acid (CGP55845A) or 3-amino-propyl(diethoxymethyl)phosphinic acid (CGP35348). Barium which blocks G-protein-coupled, inwardly rectifying potassium channels, does not block PPD. Heterosynaptic depression mediated by GABAB receptors was also observed. The depression of the entorhinal pathway by stimulation of the temporal pathway is greater than depression of the temporal pathway by stimulation of the entorhinal pathway. Moreover, PPD increases with stimulus strength and the depression is enhanced by short trains of stimuli, consistent with stronger stimulation resulting in more GABA reaching GABAB receptors on excitatory glutamatergic synapses. Synaptic activation of GABAB receptors may be important in regulating excitability in a frequency-dependent manner with maximal depression occurring at approximately 5 Hz, which approximates to the theta rhythm. That homosynaptic and heterosynaptic depression by stimulation of the temporal pathway is greater than by stimulation of the entorhinal pathway suggests that activation of temporal feedforward connections to the perirhinal cortex can dominate the GABAergic control of synaptic activity within the perirhinal cortex.
Keywords:GABA release    glutamate    presynaptic    synaptic transmission
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号