首页 | 本学科首页   官方微博 | 高级检索  
     


Domain adaptation for semantic role labeling of clinical text
Authors:Yaoyun Zhang  Buzhou Tang  Min Jiang  Jingqi Wang  Hua Xu
Affiliation:1University of Texas School of Biomedical Informatics at Houston, Houston, TX, USA;2Department of Computer Science, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China
Abstract:Objective Semantic role labeling (SRL), which extracts a shallow semantic relation representation from different surface textual forms of free text sentences, is important for understanding natural language. Few studies in SRL have been conducted in the medical domain, primarily due to lack of annotated clinical SRL corpora, which are time-consuming and costly to build. The goal of this study is to investigate domain adaptation techniques for clinical SRL leveraging resources built from newswire and biomedical literature to improve performance and save annotation costs.Materials and Methods Multisource Integrated Platform for Answering Clinical Questions (MiPACQ), a manually annotated SRL clinical corpus, was used as the target domain dataset. PropBank and NomBank from newswire and BioProp from biomedical literature were used as source domain datasets. Three state-of-the-art domain adaptation algorithms were employed: instance pruning, transfer self-training, and feature augmentation. The SRL performance using different domain adaptation algorithms was evaluated by using 10-fold cross-validation on the MiPACQ corpus. Learning curves for the different methods were generated to assess the effect of sample size.Results and Conclusion When all three source domain corpora were used, the feature augmentation algorithm achieved statistically significant higher F-measure (83.18%), compared to the baseline with MiPACQ dataset alone (F-measure, 81.53%), indicating that domain adaptation algorithms may improve SRL performance on clinical text. To achieve a comparable performance to the baseline method that used 90% of MiPACQ training samples, the feature augmentation algorithm required <50% of training samples in MiPACQ, demonstrating that annotation costs of clinical SRL can be reduced significantly by leveraging existing SRL resources from other domains.
Keywords:semantic role labeling   shallow semantic parsing   clinical natural language processing   domain adaptation   transfer learning
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号